
Approximate Empirical Bayes for Deep
Neural Networks

Han Zhao∗, Yao-Hung Hubert Tsai∗, Ruslan Salakhutdinov and Geoff Gordon
Machine Learning Department, Carnegie Mellon University

Summary
Learning Parameters in Neural Networks:

•Maximum likelihood estimation: rich neural networks overfit on
small datasets.
• Regularizations: Weight decay, early stopping, dropout, DeCov,

spectral regularization, etc.

Contributions:

•We propose an approximate empirical Bayes (AEB) framework for
learning neural networks.
•We give a block coordinate ascent algorithm to optimize the

weight matrix.

Motivating Example: A simple two-layer feed-forward neural net-
work:

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Forward propagation: ŷ = aTh, h = σ(Wx).
• Input x, hidden layer h, a single output y ∈ R.
•Weights: W and a.
• ReLU activation σ(·), `2 loss as objective function.

Backward propagation:

•W ← W − α(ŷ − y)(a � h′)xT .
• The gradient matrix is rank one.
• Rows/Columns of the updates are correlated with each other.

It is beneficial to learn from the experience of others.
– Bradley Efron

The Model and Algorithm
Approximate Empirical Bayes:
Introduce a matrix-variate normal distribution over the weight matrix:

W ∼MN (0p×d,Σr,Σc),
• Σr ∈ Sp++: Covariance matrix over row vectors.
• Σc ∈ Sd++: Covariance matrix over column vectors.
•MN (A,Σr,Σc) is a matrix-variate normal with mean vec(A) and

covariance Σr ⊗ Σc.

The true empirical Bayes approach is intractable for neural networks,
hence we approximate it with the following optimization formulation:

max
W

max
Σr,Σc

log p(D |W) + log p(W | Σr,Σc)

Plugging in the prior distribution leads to a constrained optimization
problem:

min
W,a

min
Ωr,Ωc

1
2
|ŷ(W, a)− y|2 + λ||Ω1/2

r WΩ1/2
c ||2F

− λ (d log det(Ωr) + p log det(Ωc))
subject to uIp � Ωr � vIp, uId � Ωc � vId

• Ωr := Σ−1
c and Ωc := Σ−1

c are the corresponding precision matrices.

Block Coordinate Ascent Algorithm:
Input: Initial value w0 := {a(0),W (0)}, Ω(0)

r and Ω(0)
c , first-order opti-

mization algorithm A, constants 0 < u ≤ v.
1: for t = 1, . . . ,∞ until convergence do
2: Fix Ω(t−1)

r , Ω(t−1)
c , optimize w(t) by backpropagation and algo-

rithm A
3: Ω(t)

r ← InvThresholding(W (t)Ω(t−1)
c W (t)T , d, u, v)

4: Ω(t)
c ← InvThresholding(W (t)TΩ(t)

r W
(t), p, u, v)

5: end for
6:

7: procedure INVTHRESHOLDING(∆,m, u, v)
8: Compute SVD: Qdiag(r)QT = SVD(∆)
9: Threshold r′← T[u,v](m/r)

10: return Qdiag(r′)QT

11: end procedure

Experiments
Multi-class classification: MNIST dataset.
Network structure: CONV5×5×1×10-CONV5×5×10×20-FC320×50-FC50×10.
Only impose prior distribution on the weight matrix of the last layer.

102 103 104

Train Size

75

80

85

90

95

100

A
cc

ur
ac

y

CNN
CNNWeightDecay
CNNDropout
CNNAEB

Multi-task regression: SARCOS dataset.
Goal: Map from a 21-dimensional input space (7 joint positions, 7
joint velocities, 7 joint accelerations) to the corresponding 7 joint
torques. The training set and test set contain 44,484 and 4,449 ex-
amples. Network structure: FC21×256-FC256×100-FC100×7.

1 2 3 4 5 6 7
Task index

0.0

0.1

0.2

0.3

0.4

0.5

0.6

E
xp

la
in

ed
 V

ar
ia

nc
e

MTL
MTL-AEB

UAI-2018 Aug. 10th, 2018 Uncertainty in Deep Learning Workshop

