Summary

Learning Parameters in Neural Networks:

e Maximum likelihood estimation: rich neural networks overfit on
small datasets.

e Regularizations: Weight decay, early stopping, dropout, DeCov,
spectral regularization, etc.

Contributions:

e We propose an approximate empirical Bayes (AEB) framework for
learning neural networks.

e We give a block coordinate ascent algorithm to optimize the
welght matrix.

Motivating Example: A simple two-layer feed-forward neural net-

work:
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Forward propagation: § = a’h, h = ¢(Wx).

e Input x, hidden layer h, a single output y € R.
e Weights: W and a.
e ReLLU activation o (-), /5 loss as objective function.

Backward propagation:
oW+ W —aj—y)(a®h)x!.
e The gradient matrix 1s rank one.
e Rows/Columns of the updates are correlated with each other.

It is beneficial to learn from the experience of others.
— Bradley Efron
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The Model and Algorithm

Approximate Empirical Bayes:
Introduce a matrix-variate normal distribution over the weight matrix:

W~ MN(0pxd, 2, 2c),
o Y. € St : Covariance matrix over row vectors.
), € S‘i .+ Covarlance matrix over column vectors.

o MN(A,X,,X.) is a matrix-variate normal with mean vec(A) and
covariance 2., Q 2.

The true empirical Bayes approach is intractable for neural networks,
hence we approximate it with the following optimization formulation:

logp(D | W) + log p(W | &y, 2)

max max
W L, 2

Plugging 1n the prior distribution leads to a constrained optimization
problem:

. . L 2 1/2 1/212
min min 19V, a) =y + A W[5
— A (dlogdet(€).) + plog det(€).))

subject to ul, 28 2vl,, uly Q. vl

e O, =Y land Q. = X ! are the corresponding precision matrices.

Block Coordinate Ascent Algorithm:
Input: Initial value w’ := {2l WO}, QU and OV, first-order opti-
mization algorithm %I, constants 0 < u < .
1: fort =1,..., 00 until convergence do
2: Fix ng_l), ng_l), optimize w'’) by backpropagation and algo-
rithm
Q) < InvThresholding(WWQU=DW T d 4, v)
Q) < InvThresholding(WWTQWW ) p. w, v)
end for

procedure INVTHRESHOLDING(A, m, u, v)
Compute SVD: Qdiag(r)Q’ = SVD(A)
Threshold r’ < T[ujv](m/r)

10 return Qdiag(r’)Q?!

11: end procedure
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Experiments

Multi-class classification: MNIST dataset.
Network Sstructure: CO NV5 “5x1X 1Q-CO NV5><5>< 10X20-FC320X 50~ FC5()>< 10-
Only impose prior distribution on the weight matrix of the last layer.
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Multi-task regression: SARCOS dataset.

Goal: Map from a 21-dimensional input space (7 joint positions, 7
joint velocities, 7 joint accelerations) to the corresponding 7 joint
torques. The training set and test set contain 44,484 and 4,449 ex-
amples. Network structure: FC21X256-FC256><100-FC100X7.

0.6 mm MTL
| MTL-AEB
0.5
804
(e
ks
©
>
3 0.3
(@
£
o
X
LLl
0.2
0.1
0.0
3 4 6 7

Task index

Uncertainty in Deep Learning Workshop



