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Abstract

We propose an approximate empirical Bayes
framework and an efficient algorithm for learn-
ing the weight matrix of deep neural networks.
Empirically, we show the proposed method
works as a regularization approach that helps
generalization when training neural networks
on small datasets.

1 Introduction

The empirical Bayes methods provide us a powerful tool
to obtain Bayesian estimators even if we do not have
complete information about the prior distribution. The
literature on the empirical Bayes methods and its appli-
cations is abundant [2, 6, 8, 9, 10, 15, 21, 23]. Existing
studies on parametric empirical Bayes methods focus on
the setting where the likelihood function and the prior are
assumed to have specific forms, e.g., exponential family
distribution and its conjugate prior, so that the marginal
distribution of data has a closed form from which an esti-
mator of the hyperparameter in the prior distribution can
be obtained. While such assumption helps to simplify the
setting in order to demonstrate the power of the empirical
method, it restricts us from using more expressive and
rich models.

Motivated by the success of the empirical Bayes method
in the Gaussian settings, in this paper we explore extend-
ing it to expressive nonlinear models using deep neural
networks. Although deep neural networks have been
widely applied in various domains [14, 16, 18, 19], its
parameters are learned via the principle of maximum like-
lihood in both classification and regression settings, hence
its success crucially hinges on the availability of large
scale datasets [25]. While different kinds of regulariza-
tion approaches have been studied and designed for neu-
ral networks, e.g., weight decay [17], early stopping [4],
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Dropout [22] and the more recent DeCov [5] method, in
this paper we propose a regularization approach for the
weight matrix in neural networks through the lens of the
empirical Bayes method. We aim to address the prob-
lem of overfitting when training large networks on small
dataset. Our key insight stems from the famous argument
by Efron [6]: It is beneficial to learn from the experience
of others. Specifically, from an algorithmic perspective,
we argue that the connection weights of neurons in the
same layer (row/column vectors of the weight matrix) will
be correlated with each other through the backpropaga-
tion learning, and hence by learning from other neurons in
the same layer, a neuron can “borrow statistical strength”
from other neurons to reduce overfitting.

As an illustrating example, consider the simple setting
where the input x ∈ Rd is fully connected to a hidden
layer h ∈ Rp, which is further fully connected to the
single output ŷ ∈ R. Let σ(·) be the nonlinear activation
function, e.g., ReLU [20], W ∈ Rp×d be the connection
matrix between the input layer and the hidden layer, and
a ∈ Rp be the vector connecting the output and the hidden
layer. Without loss of generality ignore the bias term in
each layer, we have: ŷ = aTh,h = σ(Wx). Consider
using the usual `2 loss function `(ŷ, y) = 1

2 |ŷ − y|
2 and

take the derivative of `(ŷ, y) w.r.t. W . We obtain the
update formula in backpropagation as follows:

W ←W − α(ŷ − y)(a� h′) xT ,

where h′ is the componentwise derivative of h w.r.t. its
input argument, and α > 0 is the learning rate. For any
fixed a > 0 (or a < 0), realize that (a�h′) xT is a rank 1
matrix, and furthermore the component of h′ is either 0 or
1. Hence the update for each row vector of W is linearly
proportional to x. Note that the observation holds for any
input pair (x, y), so the update formula implies that the
row vectors of W are correlated with each other. Similar
analysis also holds for the column vectors of W . The
above observation leads us to the following question: can
we define a prior distribution over W that captures the
correlations between its row vectors and column vectors?



2 Preliminary

In this section, we first introduce the notation used
throughout the paper and then give a brief discussion
on the empirical Bayes method [1, 7, 11] and its corre-
sponding estimator [8, 9].

2.1 Notation and Setup

We use lowercase letter, such as y, to represent scalar and
lowercase bold letter, such as x, to denote vector. Capital
letter, e.g., X , is reserved for matrix. Calligraphic letter,
such as D, is used to denote set. We write tr(A) as the
trace of a matrix A and vec(A) as A’s vectorization (by
stacking its column vectors on top of one another). [n]
is used to represent the set {1, . . . , n} for any integer n.
a1 � a2 stands for the Hadamard product (elementwise
product) between two vectors a1 and a2.

Suppose we have access to a training set D of n pairs of
data instances (xi, yi), i ∈ [n]. We consider the super-
vised learning setting where xi ∈ X ⊆ Rd and yi ∈ Y .
For a regression problem, Y = R; for a binary classifi-
cation problem, Y = {1,−1}. Let p(y | x,w) be the
conditional distribution of y given x with parameter w.
The parametric form of the conditional distribution is as-
sumed be known. In this paper, we consider a Bayesian
setting that the model parameter w is sampled from a
prior distribution p(w | θ) with hyperparameter θ. On
the other hand, given D, the posterior distribution of w
is denoted by p(w | D, θ). From a Bayesian perspec-
tive, given an unseen instance x, the goal is to infer the
predictive distribution:

p(y | x,D, θ) =

∫
p(y | x,w) · p(w | D, θ) dw, (1)

from which we can compute the mean, or the median,
or other statistic (depending on the choice of the loss
function) as our estimator of the unseen target variable y.

2.2 The Empirical Bayes Method

To solve the Bayesian inference in Equation (1), we need
access to the value of the hyperparameter θ. However,
complete information about the hyperparameter θ is usu-
ally not available in practice. Considering this issue, em-
pirical Bayes method [8, 21] proposes to estimate θ from
the data directly using the marginal distribution:

θ̂ = arg max
θ

p(D | θ)

= arg max
θ

∫
p(D | w) · p(w | θ) dw. (2)

Under specific choice of the likelihood function p(x, y |
w) and the prior distribution p(w | θ), e.g., exponential

family distribution and its corresponding conjugate prior,
we can solve the integral in (2) in closed form to obtain an
analytic solution of θ̂, which can be subsequently plugged
in (1) to obtain a Bayesian estimator for the model pa-
rameter w or to compute the predictive distribution of an
unseen instance x.

At a high level, by learning the hyperparameter θ in the
prior distribution directly from data, the empirical Bayes
method provides us a principled and convenient way to
obtain an estimator of the model parameter w. In fact,
when both the prior and the likelihood functions are nor-
mal, it has been formally shown that the empirical Bayes
estimators, e.g., the James-Stein estimator [15] and the
Efron-Morris estimator [9], dominate the classic maxi-
mum likelihood estimator (MLE) in terms of quadratic
loss for every choice of the model parameter w. At a
colloquial level, the success of empirical Bayes estima-
tors can be attributed to the effect of “learning from the
experience of others” [6], which also makes it a power-
ful tool in recent studies of multitask learning [26] and
meta-learning [12].

3 Empirical Bayes Regularization

3.1 Approximate Empirical Bayes

When the likelihood function p(D | w) is implemented
as a neural network, the marginalization in (2) over model
parameter w cannot be computed exactly. Nevertheless,
instead of performing expensive Monte-Carlo simulation,
we can use point estimate of w to approximate the integral
as follows:∫

p(D | w) · p(w | θ) dw ≈ p(D | ŵ) · p(ŵ | θ). (3)

Note that the above approximation will be accurate if the
likelihood under ŵ dominates the likelihoods under other
model parameters.

Given an estimate ŵ, by maximizing the R.H.S. of (3),
we can obtain θ̂ as an approximator of the maximum
marginal likelihood estimator of θ. As a result, we can
use θ̂ to further refine the estimate ŵ by maximizing the
posterior distribution as follows:

ŵ← max
w

p(w | D) = max
w

p(D | w) · p(w | θ̂). (4)

The maximizer of (4) can in turn be used to better ap-
proximate the integral in (3). Formally, we can define
the following optimization problem that characterizes our
framework of the approximate empirical Bayes (AEB)
method:

max
w

max
θ

log p(D | w) + log p(w | θ) (5)



It is worth to connect the optimization problem (5) to the
classic maximum a posteriori (MAP) inference and also
discuss their difference: if we drop the inner optimization
over the hyperparameter θ in the prior distribution, then
for any fixed value θ̂, (5) reduces to MAP with the prior
defined by the specific choice of θ̂, and the maximizer ŵ
corresponds to the mode of the posterior distribution given
by θ̂. From this perspective, the optimization problem
in (5) actually defines a series of MAP inference prob-
lems, and the sequence {ŵj(θ̂j)}j defines a solution path
towards the final approximate empirical Bayes estimator.

On the algorithmic side, the optimization problem (5)
also suggests a natural block coordinate ascent algorithm
where we alternatively optimize over w and θ until the
convergence of the objective function. We will detail the
discussion of the algorithm in next section where we give
a specific prior distribution over the parameters of neural
networks.

3.2 The Model and Algorithms

Inspired by the observation from Sec. 1, we propose to
define a matrix-variate normal distribution [13] over the
connection weight matrix W :

W ∼MN (0p×d,Σr,Σc), (6)

where Σr ∈ Sp++ and Σc ∈ Sd++ are the row and column
covariance matrices, respectively. The probability density
function p(W | Σr,Σc) is given by:

p(W | Σr,Σc) =
exp

(
−tr(Σ−1

r WΣ−1
c WT )/2

)
(2π)pd/2 det(Σr)d/2 det(Σc)p/2

Equivalently, one can understand the matrix-variate nor-
mal distribution over W as a multivariate normal distribu-
tion with a Kronecker product covariance structure over
vec(W ): vec(W ) ∼ N (0p×d,Σc ⊗ Σr). It is then easy
to check that the marginal prior distributions over the row
and column vectors of the weight matrix W are given by:

Wi: ∼ N (0d, [Σr]ii · Σc), W:j ∼ N (0p, [Σc]jj · Σr)

We point out that the Kronecker product structure of the
covariance matrix exactly captures our prior about the
connection matrix W : the fan-in/fan-out weights of neu-
rons in the same layer (row/column vectors of W ) are
correlated with the same correlation matrix, and they only
differ at the scales (variances). Alternatively, if we treat
learning each row/column vector as a separate task, then
the distribution (6) corresponds to the common prior over
different task vectors [26].

Define Ωr := Σ−1
r and Ωc := Σ−1

c to be the correspond-
ing precision matrices and plug in the prior distribution (6)
into the general approximate empirical Bayes framework

(5). After routine algebraic simplifications, we reach the
following concrete optimization problem that corresponds
to the model we described in Sec. 1:

min
W,a

min
Ωr,Ωc

1

2
|ŷ(W,a)− y|2 + λ||Ω1/2

r WΩ1/2
c ||2F

− λ (d log det(Ωr) + p log det(Ωc))

subject to uIp � Ωr � vIp, uId � Ωc � vId (7)

where λ is a constant that only depends on p and d, and
0 < u ≤ v are two constants that guarantee the optimiza-
tion problem (7) is well-posed.

It is not hard to show that in general the optimization prob-
lem (7) is not jointly convex in terms of {a,W,Ωr,Ωc},
and this holds even if the activation function is linear
and we do not have the hidden layer. However, for any
fixed a,W , the partial optimization over Ωr and Ωc is
bi-convex, and more importantly, there is an efficient
algorithm that finds the optimal Ωr(Ωc) for any fixed
a,W,Ωc(Ωr) in O(p2 max{d, p}) time [26]. Given a
pair of constants u, v, we define the following threshold-
ing function T[u,v](x):

T[u,v](x) =


u, x < u

x, u ≤ x ≤ v
v, x > v

. (8)

We summarize our block coordinate descent algorithm to
solve (7) in Alg. 1. In each iterative loop, Alg. 1 takes a
first-order algorithm A, e.g., the stochastic gradient de-
scent, to optimize the parameters of the neural network by
backpropagation. It then proceeds to compute the optimal
solutions for Ωr and Ωc using the InverseThresholding as
a sub-procedure. Alg. 1 terminates when some conver-
gence conditions on model parameters w are satisfied.

4 Experiments

In Sec. 3 we develop our model and algorithms based
on a simple neural network with one hidden layer and a
single output. However, it is straightforward to extend
our AEB framework to more sophisticated and practical
models with various structures. In this section we demon-
strate the effect of our AEB method on regularizing deep
neural networks. Specifically, we consolidate our analy-
sis on two different tasks. The first one is a multi-class
classification problem where we define a matrix-variate
prior over the weight matrix in the last softmax layer. In
the second experiment, we consider a multitask learning
setting where neural networks are used to learn the shared
representations among all the tasks [3], and we apply our
AEB method on the last layer weight matrix, where each
row corresponds to a separate task vector.

Multi-class Classification. We consider the MNIST
dataset where the target is to classify an input 28 × 28



Algorithm 1 Block Coordinate Descent for Approximate Empirical Bayes

Input: Initial value w0 := {a(0),W (0)}, Ω
(0)
r and Ω

(0)
c , first-order optimization algorithm A, constants 0 < u ≤ v.

1: for t = 1, . . . ,∞ until convergence do
2: Fix Ω

(t−1)
r , Ω

(t−1)
c , optimize w(t) by backpropagation and algorithm A

3: Ω
(t)
r ← InvThresholding(W (t)Ω

(t−1)
c W (t)T , d, u, v)

4: Ω
(t)
c ← InvThresholding(W (t)T Ω

(t)
r W (t), p, u, v)

5: end for
6:
7: procedure INVTHRESHOLDING(∆,m, u, v)
8: Compute SVD: Qdiag(r)QT = SVD(∆)
9: Threshold r′ ← T[u,v](m/r) (see (8) for the definition of T[u,v](·))

10: return Qdiag(r′)QT

11: end procedure

digit image into {0, . . . , 9} categories. In this experiment,
we would like to show that AEB provides an effective
regularization on the network parameters when the train-
ing set size is small. To this end, we use a convolutional
neural network as our baseline model with the following
structure: CONV5×5×1×10-CONV5×5×10×20-FC320×50-
FC50×10. The notation CONV5×5×1×10 denotes the con-
volutional layer with kernel size 5 × 5 from depth 1 to
10; the notation FC320×50 denotes the fully connected
layer with size 320× 50. We ignore bias term for brevity.
As a comparison, in our AEB model we place a matrix-
variate normal prior over the weight matrix of the last
softmax layer, and we use Alg. 1 to optimize both the
model weights of the convolutional network and the two
covariance matrices of the weight matrix in the last layer.

We compare our AEB method with classic regulariza-
tion methods in the literature of deep learning, including
weight decay and dropout. To show the effect of regular-
ization, we gradually increase the training set size from 60
to 60,000 for 11 different experiments. For each training
set size, we repeat the experiments for 10 times, and we
show the mean along with its standard deviation as error
bars in Fig. 1a.

It is clear from Fig. 1a that AEB helps generalization by
reducing overfitting, and its regularization effect is partic-
ularly beneficial when the training set size is small. From
the experiments we can also observe that the variance of
the CNN-AEB model is significantly smaller than all the
other methods, even if training set size is small.

Multitask Learning. In the second experiment we
consider a dataset for multitask learning. This data
relates to an inverse dynamics problem for a seven
degree-of-freedom (DOF) SARCOS anthropomorphic
robot arm [24]. The goal of this task is to map from
a 21-dimensional input space (7 joint positions, 7 joint
velocities, 7 joint accelerations) to the corresponding 7
joint torques. Hence there are 7 tasks and the inputs are
shared among all the tasks. The training set and test set
contain 44,484 and 4,449 examples, respectively.
Inspired by the admissible property of the empirical Bayes
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Figure 1: Best viewed zoomed in and in color.

estimator, we are interested in investigating whether our
AEB estimator can lead to better generalization for mul-
tiple regression problems, as empirical Bayes estima-
tors do. To do so, we use a baseline fully-connected
network (MTL) with the following structure: FC21×256-
FC256×100-FC100×7, where the 7 output units correspond
to 7 different tasks. Again, in MTL-AEB we place a prior
over the task weight matrix and we optimize for both
model parameters and two covariance matrices. We plot
and show the explained variance (between 0 and 1, the
larger the better) of MTL and MTL-AEB in Fig. 1b. The
results in Fig. 1b confirm our hypothesis: by making use
of the effect “learning from the experience of ours”, AEB
estimator consistently reduces the test set mean squared
error and improves generalization.

5 Conclusion

We propose an approximate empirical Bayes method for
learning the model parameters of deep neural networks.
On two datasets we demonstrate that our AEB method
helps to reduce overfitting and hence improves generaliza-
tion when the training set is small. One future direction
is to develop a more efficient approximate solution to
optimize the two covariance matrices so that our method
can scale to larger networks. It is also interesting to see
whether applying our AEB method to all the layers can
further reduce overfitting or not.
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