
On the Expressive Power of Tree-Structured 
Probabilistic Circuits

Motivation

Probabilistic circuits (PCs) have emerged as a powerful framework for 
efficient and exact probabilistic inference. Nevertheless, most PC learning 
algorithms can only output efficient circuits with a structure of a directed 
acyclic graph (DAG), but inefficient tree-structured circuits. 

Question: Is there truly an exponential gap between DAGs and trees for the 
PC structure? 

Our answer: Not quite. Even in the worst case, there is only a sub-
exponential gap. But, with a depth restriction, a sub-exponential separation 
is inevitable.

Decomposability: A PC is decomposable if and only if the children of 
every product node have disjoint scopes. 

Smoothness: A PC is smooth if and only if the children of every sum node 
have the same scope. 

Validity: A PC is valid if and only if it is both decomposable and smooth.

We provide results from two sides, inspired by previous works in circuit 
complexity theory. 
• We proved, with a comprehensive algorithm, that for a network polynomial 

that can be computed efficiently with a DAG-structured PC, there always 
exists a sub-exponentially-sized tree-structured PC to represent it. 

• Although conditional and not tight, we proved that, under a restriction on 
the depth of the trees, there exists a strictly sub-exponential separation 
between tree and DAG-structured PCs. 

Our Contributions

Probabilistic Circuits (PCs): 
• A probabilistic circuit (PC) is a rooted DAG whose leaves represent 

indicator variables, and internal nodes are sum and product nodes. 
• Edges from sum nodes to their children must have positive weights. 
• The value of a product node is the product of the values of its children. 

The value of a sum node is the weighted sum of the values of its children. 
The value of a PC is the value of its root. 

Scope: The scope of a node is the set of variables whose indicators are 
descendants of the node 

Open Problems

• Tightness of the upper bound: is   the best one can achieve?
• Conditions on the lower bound: can we remove or at least relax the 

depth restriction ?
• Refinements of the lower bound: with or without the depth restriction, 

may we obtain a more concrete exponent than ?
• Ultimate goal: finding or proving the impossibility of a pair of identical 

upper and lower bounds

nO(log n)

o(log n)

ω(1)

References

• Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rackoff. 
Fast parallel computation of polynomials using few processors. SIAM J. 
Comput., 12:641–644, 1983.

• Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic 
circuits. Computational Complexity, 17:515–535, 2008.

• Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan, and 
Sébastien Tavenas. Towards optimal depth-reductions for algebraic 
formulas. In Proceedings of the Conference on Proceedings of the 38th 
Computational Complexity Conference, CCC ’23.

Lang Yin, Han Zhao 

University of Illinois Urbana-Champaign

Key Definitions

Result One: A Universal Upper Bound

Theorem 1. For any DAG-structured PC with  variables and of size 
, there exists an equivalent, tree-structured PC of depth  

and size .

n
poly(n) O(log n)

nO(log n)

+

→ →

x2 = ωu1v1 +

→ →

+ +
x̄1

x1 x̄1 x2 x̄2

v

v1

u

v2 v3

u1

u2

+

→ → →

x2
+ +

x̄1

x1 x̄1 x2 x̄2

v1 v2 v3

u1 u2

The process of transforming an arbitrary DAG to a DAG with depth restriction. The red nodes are those that were critical in 
the transformation

The proof is constructive inspired by methods developed firstly by Valiant et 
al (1983) and later optimized by Raz and Yehudayoff (2008). The proof has 
two major steps. 

• Transform the original DAG of size  to another DAG of depth 
 and size .

• Reduce the depth from  in the original algorithm to .
• Must maintain decomposability and smoothness during the depth 

reduction.
• Use standard duplication to transform the new DAG to a tree of size 

.

poly(n)
O(log n) poly(n)

O(log2 n) O(log n)

nO(log n)

Theorem 2. There is a distribution so that any tree-structured PC of depth 
 computing that distribution must have size .o(log n) nω(1)

The proof conducts a reduction to a result in arithmetic trees by [Fournier 
et al. 2023].
• Given an eligible, minimum tree-structured PC  of depth .

• Removing negative indicators in  to make it an arithmetic tree 

• Must ensure that  computes a polynomial specified in [Fournier et 
al. 2023].

• Must utilize the structure derived from decomposability and 
smoothness to verify the distribution computed by .

• By Theorem 3 in [Fournier et al. 2023], the new tree  must have size 
at least .

• The original tree  must be even larger.

T o(log n)
T T′ 

T′ 

T′ 

T′ 

nω(1)

T

Result Two: A Conditional Lower Bound


