On the Expressive Power of Tree-Structured

Probabilistic Circuits

Lang Yin, Han Zhao

University of lllinois Urbana-Champaign

Motivation

Probabilistic circuits (PCs) have emerged as a powerful framework for
efficient and exact probabilistic inference. Nevertheless, most PC learning
algorithms can only output efficient circuits with a structure of a directed
acyclic graph (DAG), but inefficient tree-structured circuits.

Our Contributions

We provide results from two sides, inspired by previous works in circuit

complexity theory.

- We proved, with a comprehensive algorithm, that for a network polynomial
that can be computed efficiently with a DAG-structured PC, there always
exists a sub-exponentially-sized tree-structured PC to represent it.

- Although conditional and not tight, we proved that, under a restriction on
the depth of the trees, there exists a strictly sub-exponential separation
between tree and DAG-structured PCs.

Key Definitions

Probabilistic Circuits (PCs):

« A probabilistic circuit (PC) is a rooted DAG whose leaves represent
Indicator variables, and internal nodes are sum and product nodes.

« Edges from sum nodes to their children must have positive weights.

« The value of a product node is the product of the values of its children.
The value of a sum node is the weighted sum of the values of its children.
The value of a PC is the value of its root.

Scope: The scope of a node is the set of variables whose indicators are
descendants of the node

Decomposability: A PC is decomposable if and only if the children of
every product node have disjoint scopes.

Smoothness: A PC is smooth if and only if the children of every sum node
have the same scope.

Validity: A PC is valid if and only if it is both decomposable and smooth.

Result One: A Universal Upper Bound

Theorem 1. For any DAG-structured PC with n variables and of size

poly(n), there exists an equivalent, tree-structured PC of depth O(log n)
O(log n)

and size n

The proof is constructive inspired by methods developed firstly by Valiant et
al (1983) and later optimized by Raz and Yehudayoff (2008). The proof has
two major steps.

. Transform the original DAG of size poly(7) to another DAG of depth
O(log n) and size poly(n).

. Reduce the depth from O(log? n) in the original algorithm to O(log n).

* Must maintain decomposability and smoothness during the depth
reduction.

» Use standard duplication to transform the new DAG to a tree of size
nO(log n)_

The process of transforming an arbitrary DAG to a DAG with depth restriction. The red nodes are those that were critical in
the transformation

L
UNIVERSITY OF RO

},‘ NEURAL INFORMATION
"’.i. PROCESSING SYSTEMS

URBANA-CHAMPAIGN

Result Two: A Conditional Lower Bound

Theorem 2. There is a distribution so that any tree-structured PC of depth

o(log n) computing that distribution must have size n®M.

The proof conducts a reduction to a result in arithmetic trees by [Fournier
et al. 2023].

- Given an eligible, minimum tree-structured PC T of depth o(log n).
- Removing negative indicators in 7" to make it an arithmetic tree 7"

. By Theorem 3 in [Fournier et al. 2023], the new tree 7" must have size
at least n®W,

. The original tree T must be even larger.

Open Problems

. Tightness of the upper bound: is 798" the best one can achieve?

« Conditions on the lower bound: can we remove or at least relax the
depth restriction o(log n)?

« Refinements of the lower bound: with or without the depth restriction,
may we obtain a more concrete exponent than w(1)?

 Ultimate goal: finding or proving the impossibility of a pair of identical
upper and lower bounds

References

* Leslie G. Valiant, Sven Skyum, Stuart J. Berkowitz, and Charles Rackoff.
Fast parallel computation of polynomials using few processors. SIAM J.
Comput., 12:641-644, 1983.

* Ran Raz and Amir Yehudayoff. Balancing syntactically multilinear arithmetic
circuits. Computational Complexity, 17:515-535, 2008.

* Hervé Fournier, Nutan Limaye, Guillaume Malod, Srikanth Srinivasan, and
Sébastien Tavenas. Towards optimal depth-reductions for algebraic
formulas. In Proceedings of the Conference on Proceedings of the 38th
Computational Complexity Conference, CCC ’23.



