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What is Multitask Learning?

Multitask learning:
- Suppose we need to model k different tasks
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Multitask Representation Learning

Multitask learning:

- Train a joint model with multiple heads, where one head ~ one task
Pros:
= Easy to scale to many tasks: adding one more task-specific
head

= Can exploit potential synergies among tasks

- Cons:
= Hard to design tailored structures
= “Negative transfer” could happen due to conflicting tasks
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Figure credit: “Multitask Learning”, PhD Thesis, Rich Caruana, 1997 INPUTS



Multitask Representation Learning

Multitask learning: E ol ((hy » 9)(X), V)]

Multi-objective vector loss: Z({h;}5_,, g) = : e RF
E gl £1((hy 2 8)(X), Y)]

Note “<” is not a total ordering in R* for k > 1, so in general we
pick a preference vector

k
i=1

mln Z Z f.o (l)) y(l))

v

“shared multitask feature learning”

Linear scalarization

“task-specific header”
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Multitask Representation Learning

Linear scalarization:

k n;
W, L
MTL Loss: min Z—Z £{(h; o g)()%(l)),yj(z))
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Linear Scalarization for MTL

Linear scalarization:

MTL Loss: min 2 Zf((h o)), y)

P(F) = %(cgnv(%) P(F) < P(conv(F))



Multi-Objective Optimization

What if we use random weights wl) e A,_, at each iteration t € [T]?

A simple starter: simply randomize the combination weighting vector
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Multi-Objective Optimization

Pseudo-code:

Algorithm 1 A training iteration in RW methods. The random sampling process is the only difference
between RW methods and the existing works. The red line and blue line are the only difference between

RLW and RGW methods.
1: Input: numbers of tasks T, learning rate 7, dataset {D;}7_,, weight distribution p(X), normalization
function f

2: Qutput: task-sharing parameter ', task-specific parameters {1,}._,

3: fort=1to T do

4: Compute loss £:(Dy; 0, ¢ );

5: Compute gradient g; = Vgl (Dy; 0,14);

6: end for

7. Sample weights A from p(\) and normalize it into A via f ; > Random Sampling
8: 0 =0-— T]Zle Atgt;

9: fort=1to T do

10: P =P — NV, Aeli(Dy;0,91) or Py = Py — NV, Le(Dr; 0,1);

11: end for

Potential distributions to sample from:
- Uniform, (truncated) Normal, Dirichlet, etc



Test Accuracy of Task BR(%)

Multi-Objective Optimization

Empirical result
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Multi-Objective Optimization

However,
- Unclear this RW (randomized weight) will always converge

- Will it always converge to a Pareto optimal point?
Any other more principled methods to explore the Pareto front?

Yes, for batch learning!

GD MGDA PCGrad CAGrad (ours)
max min g, d d= (9112 +9g211)/2 max min g;' d
d= (g1 + g2)/2 @ a7 9; @

S.t. ”d” S 1 where 9ilj = Gi — mgj s.t. “d - gO” <c ||gO||
J

“Multiple-Gradient Descent Algorithm (MGDA) for Multi-Objective Optimization”, Comptes Rendus Mathématique,
Désidéri, 2012.

“Multi-Task Learning as Multi-Objective Optimization”, NeurlPS’18, Sener and Kolton.

“Gradient Surgery for Multi-Task Learning”, NeurlPS’20, Yu et al. .
“Conflict-Averse Gradient Descent for Multi-task Learning”, NeurlPS’21, Liu et al.



Multi-Objective Optimization

Multiple-Gradient Descent Algorithm
Let g;, i € [k] be the gradient for the k tasks at a certain iteration
First order improvement along direction d: g 'd

Primal problem: T
max ming, d

ldl[,<1 i[k]

Interpretation: finding a common direction d that maximizes the

worst-task improvement

Dual problem:

min_ | 2:, agill3 I
QEAk—l MGDA
Interpretation: finding a convex Comblnatlon a of the max min g, d
d 0

multiple gradients with minimum £, norm
s.t. ||d]| £1

“Multiple-Gradient Descent Algorithm (MGDA) for Multi-Objective Optimization”, Comptes Rendus Mathématique,
Désidéri, 2012. 11



Linear Scalarization vs Multi-Objective Optimization

Empirical comparisons between linear scalarization vs multi-
objective optimization in NNs:

In Defense of the Unitary Scalarization
for Deep Multi-Task Learning

Vitaly Kurin*
University of Oxford 3 3 3 3 3
e )| Do Current Multi-Task Optimization Methods in
Q _ _ Deep Learning Even Help?
o Ilya Kostrikov Shimon W
e\ University of California, Berkeley University o
. New York University
<
2 Abstract Derrick Xin* Behrooz Ghorbani* Ankush Garg
o0 . ) _ Google Research Google Research Google Research
— Recent multi-task learning research argues agait Mountain View, CA Mountain View, CA Mountain View, CA
U :.m?mg. simply Iunimizes tl.le sum of the task lost dxin@google.com ghorbani@google.com ankugarg@google.com
imization algorithms have instead been proposed o
] about what makes multi-task settings difficult. T o
S require per-task gradients, and introduce signific: . . :
8 mgntatign overhiad. We show that unitaryg scale N GOrl;aII;Flrat h d] uSt;n 1? llmerh
— regularization and stabilization techniques from (@ oogle Rescarc oogle Researc
- improves upon the performance of complex multi- (D) Mountain View, CA Mountam View, CA
S vised and reinforcement learning settings. We the /) orhanf@google.com gilmer@google.com
e\ that many specialized multi-task optimizers can |
o regularization, potentially explaining our surprisir N
— call for a critical reevaluation of recent research i (@\
— Abstract
| —— =
S Recent research has proposed a series of specialized optimization algorithms for
. deep multi-task models. It is often claimed that these multi-task optimization
2 (MTO) methods yield solutions that are superior to the ones found by simply opti-
& mizing a weighted average of the task losses. In this paper, we perform large-scale
experiments on a variety of language and vision tasks to examine the empirical
— validity of these claims. We show that, despite the added design and computational
> complexity of these algorithms, MTO methods do not yield any performance im-
AN provements beyond what is achievable via traditional optimization approaches. We
'y highlight alternative strategies that consistently yield improvements to the perfor-
2 mance profile and point out common training pitfalls that might cause suboptimal
— results. Finally, we outline challenges in reliably evaluating the performance of
ﬁ\. MTO algorithms and discuss potential solutions.




Linear Scalarization vs Multi-Objective Optimization

Empirical comparisons between linear scalarization vs muilti-
objective optimization in NNs:

Optimization Behavior Overview En - {Zh, Fr}
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Observations:
- For large-scale NNs, the closure of the Pareto front seems to be convex

- Deeper and larger models help to enlarge the feasible region (hence

achieving Pareto-dominating solutions)

“Do Current Multi-Task Optimization Methods in Deep Learning Even Help?”, NeurlPS’ 22, Xin et al. 13



Linear Scalarization vs Multi-Objective Optimization

Research Question:

“For NNs, for every Pareto optimal v € P(F), does
there exists aw € A,_; such that the optimal solution of

the linear scalarization problem corresponds to v?”

{s

N

P(F) = P(conv(F)) P(F) < P(conv(F))

- When may MOO help?
- What is the impact of model size? 14



Linear Scalarization vs Multi-Objective Optimization

Multi-task linear network for regression:

- For each task i € [k], the prediction is given by
fix, W,a,) = xTWai

- Shared input X € R, target vector y; € R", Vi € [k], the training
loss for task 1:

(W, a;) = || XWa, — yiH%

- Parameter W € RP*4, i.e., network width = g, a; € R? are task-specific
parameters

Note:

- For linear networks without loss of generality it suffices to consider a two layer
network

- The overall model parameters 0 = ({ai}f.‘zl, W). The optimization problem is non-
convex for each task 1 15



Linear Scalarization vs Multi-Objective Optimization

Phase-transition between over-parametrized and under-parametrized
networks:

Over-parametrized regime (g > k):

Theorem (informal): The network has sufficient capacity to fit all the
tasks optimally, and the Pareto front reduces to a singleton

P(F) = {c}, c € R¥ and hence can be attained via an arbitrary choice
of convex coefficientw € A,_,. {2,

C >
{1

“Understanding and Improving Information Transfer in Multi-Task Learning”, Zhang et al., ICLR’ 20
“Revisiting Scalarization in Multi-Task Learning: A Theoretical Perspective”, Hu et al., NeurlPS’ 23



Linear Scalarization vs Multi-Objective Optimization

Phase-transition between over-parametrized and under-parametrized
networks:

Over-parametrized regime (g > k):

Theorem (informal): The network has sufficient capacity to fit all the
tasks optimally, and the Pareto front reduces to a singleton

P(F) = {c}, c € R*and hence can be attained via an arbitrary choice
of convex coefficientw € A, _;.

Intuition: let $, := X(X'X)"X "y, be the optimal linear predictor for task i
and let Y = [9,, ..., 9] € R™* be a stack of column vectors. Then, due
to the fz loss, each task-specific loss can be decomposed as

(W, a,) = || XWa, _YH% = |[XWa, _)A’i”% + |1y, _Yi”%

V-

Fliting error: can choose ¢ Approximation error: projection loss
separately for a given shared W (irreducible) 17



Linear Scalarization vs Multi-Objective Optimization

Over-parametrized regime (g > k):
Intuition: let $, := X(X'X)"X "y, be the optimal linear predictor for task i
and let ¥ = V{5 ... V] € R™* be a stack of column vectors. Then, due
to the £, loss, each task-specific loss can be decomposed as

C(W.a) = |[IXWa; — ylI5 = 1XWa; = 3,115+ 1I9; — vI5
Note that y; € Col(X) is the projection of y. into the column space

spanned by X € R™? j.e., the optimal linear prediction. Then if the
network is wide enough, i.e., g > k, we can:

- Optimize the network parameter W € RP*4 and {ai}é‘:1 C R by allocating
one neuron for each task fitting loss y,

- Pick W € RP*? such that W is full column-rank

- Foreveryi € [k], X Wa; = y; has a solution in terms of a;, € R? (because
g > kandy; € Col(Y) = Col(XW))

- Putting all together, we have || XWa; — 3,||5 = 0 and ¢; = ||9; — yil|5,
Vi e [k]



Linear Scalarization vs Multi-Objective Optimization

Under-parametrized regime (g < k):
Theorem (informal): We focus on two extremal cases:

- Extremely under-parametrized (¢ = 1): Linear scalarization suffices, i.e.,
full-exploration of the Pareto front, if and only if G := Y'Y is doubly
non-negative, i.e., the inner products for all task pairs y; and y; are non-

negative, up to negating the directions of some y.,1 € [k]

- Mildly under-parametrized (g = k — 1): Linear scalarization suffices if
and only if O = G~ ! is doubly non-negative, up to negating the
directions of some V., 1 € [K]

Remark:

- This means that in general under the under-parametrized regime, linear scalarization
Is not sufficient of full exploration

- (G and Q could be understood as a notion of “task-similarity” — task similarity is
model-dependent!, i.e., G; = (9, ;)

- Sufficient and necessary conditions for the general case of 1 < g < k — 1 still open "



Linear Scalarization vs Multi-Objective Optimization

Geometric intuition of the under-parametrized regime:

Notation: let §; := X(X"X)"X 'y, be the optimal linear predictor for task i
andlet Y = [y, ...,V] € R™ be a stack of column vectors.

For every fixed W € RP*Y, Z = XW € R4 are the linear representations learned
by NNs. Each task-specific head admits an optimal solution al.* = (ZTZ)TZTAZ-.

Hence, each task-specific loss £’; could be simplified to

min [|Z(Z'Z)'Z"9, - $.13
/=XW

Let P, := Z(Z'Z)'Z" be the projection matrix under a fixed linear
representation Z = XW, then the MOO optimization problem becomes

n}JaX ()A/lTPZ?l, ...,ﬁ,IP 75
Y4

20



Linear Scalarization vs Multi-Objective Optimization

Geometric intuition of the under-parametrized regime:
Let P, := Z(Z'Z)'Z" be the projection matrix under a fixed linear

representation Z = XW, then the MOO optimization problem becomes

/\T A
n})ax (}’ Pzy,, .. .,}’kPZyk)
Z
To illustrate the idea, Iets consider thecase g = 1 and P, = vy | with

|v||, = 1. Define s; = yi yands = Y'v € R,

v

n})ax (y P,y, .. ,y,IPZyk) < max (sl,...,slg)
7 1%

T /A ANT A
But, s (YTY) S=VTY<YTY) Yy <1

This is a function of a k-dim ellipsoid!

21



Linear Scalarization vs Multi-Objective Optimization

Geometric intuition of the under-parametrized regime:

n})ax (lePZyl,...,A,IPZyk) < max (512,...,5,3)
7 Vv

ae AN\ T Al A ANT A
and 5T <YTY> s=vTY(YTY> r'v<1

This is a function of a k-dim ellipsoid!
Furthermore, a few observations:
- The objective is invariant under negation of y,,1 € [K]

- Under negation, there are 2 different configurations, each configuration
corresponds to an (potentially degenerated) ellipsoid

- The feasible region & will be the union of Dk ellipsoid

22



Linear Scalarization vs Multi-Objective Optimization

Geometric intuition of the under-parametrized regime:

Let P, := Z(Z'Z)'Z" be the projection matrix under a fixed linear
representation Z = XW, then the MOO optimization problem becomes

H})&X (5\71PZ}A’1, -°°9j>kPZj>k)
4

Feasible MSEs restricted _ 0
to each surface All feasible MSEs

\ PR _ union !
1
1 MSE,
MSE, ) 1

0
B Eg L= LI =) . Ay ® intersection (balanced PO) 1 MSEl 0

MSE; MSE

23



Linear Scalarization vs Multi-Objective Optimization

Multi-task non-linear network for regression:

Theorem (informal): If g > nk, then there exists a network that has
sufficient capacity to fit all the tasks optimally, and the Pareto front

reduces to a singleton P(F) = {c}, ¢ € R¥ and hence can be attained

via an arbitrary choice of convex coefficient w € A, _ ;.

Remark:

- This upper bound is potentially very loose; ideally we would like an
upper bound on the width g that only depends on the number of tasks
k not the number of data points n

- No lower bound known, i.e., is there a trade-off problem in general for
under-parametrized nonlinear NNs?

NN-Width Linear NNs Nonlinear NNs

Upper bound (sufficient) K nk

Lower bound (necessary) Kk ?

24



Linear Scalarization vs Multi-Objective Optimization

Multi-task non-linear network for regression:

Theorem (informal): If g > nk, then there exists a network that has
sufficient capacity to fit all the tasks optimally, and the Pareto front

reduces to a singleton P(F) = {c}, ¢ € R¥ and hence can be attained
via an arbitrary choice of convex coefficient w € A, _ ;.

Empirical evidence:

MGDA e Scalarization MGDA-UB e Scalarization

(a) MGDA with multiple initializations (b) MGDA-UB with multiple initializations



How to Rescue?

Under-parametrized regime (g < k): how to rescue?

Randomization!
Randomization ~ Convexification

Given two under-parametrized networks f, and f;, we can construct a
randomized network as follows:

C(h) ifS<1
f(x)_{fl(x) 0.W.

where t € [0,1] and S ~ U(0,1) is a uniform RV over (0,1). Then

Cox 1 E(f(X), V)| = ey f[ £(fo(X), Y)I + (1 = DEx y[£(f,(X), Y)]

By choosing different ¢t € (0,1) we can interpolate and hence convexity
any given feasible region & .

7 = conv(7) IR (%) = Pleonv(F)




How to Rescue?

Under-parametrized regime (g < k): how to rescue?

= - k
Chebyshev scalarization: | _ A = {v c Rk - Z vo=1, > o}

i=1
Chebyshev scalarization

min max — Z 2T g)(x(l)) y(l))
g.h, i€lk] N

Theorem (Choo & Atkins, 1983): Any feasible solution that is weakly
Pareto optimal if and only if it is a solution for a weighted Chebyshev

problem under some preference vector w € A, _;.
£

“Proper Efficiency in Nonconvex Multicriterion Programming”, Choo and Atkins,
Mathematics of Operation Research, 1983

“A Unifying Perspective on Multi-Calibration: Game Dynamics for Multi-Objective Learning”,
Haghtalab et al., NeurlPS’ 23

“Robust Multi-Task Learning with Excess Risks”, He et al., ICML’ 24

“Smooth Tchebycheff Scalarization for Multi-Objective Optimization”, Lin et al., ICML’ 24
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Online Mirror Descent for Chebyshev Scalarization

Solving the Chebyshev scalarization problem with online mirror descent:

n;

minmax— ) w2 ( jfg(x.(i)), y®)
00O ielk] ni oy J J

n;

min max — wl(f(xD), y)
0e® i€, N; Py / /

Upon receiving a batch ZW = {X®_ Yy

- Apply (projected) gradient descent to optimize the primal variable: model
parameter 0 € ©

- Apply exponentiated gradient / multiplicative weight update / hedging
algorithm to optimize the dual variable: A € A, _;

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv:
2410.21764 28



Online Mirror Descent for Chebyshev Scalarization

Solving the Chebyshev scalarization problem with online mirror descent:

n;

min max — Y wZ(f,(x\),y®)
00 JEA, | 1 1 S
Primal update:

9(t+1) — TIg (9“) —neA® o w o Vf(9<t>))

Dual update:

N _ >\§t) exp (ﬂxwifz'(e(t)))
Z D =1 A exp (naw; £;(01))

At the end of T iterations, we have a sequence of model parameters
oW .. 0Y) how to combine them?

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv:
2410.21764 29



Online Mirror Descent for Chebyshev Scalarization

Our solution: Adaptive online-to-batch conversion:
- Maintain an active set of PO solutions during the algorithm

- Credit assignment: weight ;/(t) of each solution 8V « 1+ # of
intermediate solutions dominated by it

- For dominated solutions, weight ¥ = 0

A
Feasible Region t=1

1
B =1

o

19(\3) (4

)
V3 =1
4
D=3 16D

> >

Pareto Front

>

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv:
2410.21764 30



Online Mirror Descent for Chebyshev Scalarization

Under the following assumptions:
- Convexity: each f(0) is convex in 0 € R4

- Bounded feasible region: V8 € 0,]|0||, < Ry
- Bounded gradients: Vi € [k] VO € O,||V, (0|, L L

TCH(O; w) = max— Z w.l A fo (x(’)) y(’))

I€[k] N;

Theorem (convergence): under the above assumptions and the adaptive

online mirror descent with learning rate 7 = O(y/ 1/T), the algorithm
converges as follows:

log k

= [TCH(6*; w)| — min TCH(O; w) < O <,

Ee) \/T \/T

“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv:
2410.21764 31



Online Mirror Descent for Chebyshev Scalarization

Controlled PO solution:
seed=0
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Online Mirror Descent for Chebyshev Scalarization

Convergence speed and stability:

MNIST Rotation

2.5
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“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv:
2410.21764



Online Mirror Descent for Chebyshev Scalarization

Convergence speed and stability:
CIFAR10 Rotation

> —— LS(FedAvg)
2.0 TCH
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OMDeg-TCH
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“Online Mirror Descent for Tchebycheff Scalarization in Multi-Objective Optimization”, Liu et al., arXiv:
2410.21764
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LibMoon: A Gradient-based MultiObjective OptimizatioN Library in PyTorch

Method

Solution Property

Complexity  Pref.

EPO [16]
HVGrad [37]

MGDA-UB [12]
MOO-SVGD [17]
PMGDA [38]
PMTL [13]
Random [39]

Agg-LS [36]
Agg-Tche [29]
Agg-mTche [40]
Agg-PBI [29]
Agg-COSMOS [33]
Agg-SmoothTche [Z7] Approximate exact solutions

Exact solutions
Solutions with maximal HV
Random solutions

Diversity by particles repulsion
Solutions under specific demands

Solutions in sectors
Random solutions

Convex part of a PF

Exact solutions

Exact solutions
Approximate exact solutions
Approximate exact solutions

O(m?nK) v
O(m?nK?) x
O(m?nK) x
O(m?nK?) x
O(m?nK)
O(m3nK?)
O(m?nK)
O(mnK)
O(mnkK)
O(mnK)
O(mnK)
O(mnkK)
O(mnkK)
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m: number of objectives. mn: number of decision variables. K: number of
subproblems. m is usually small (e.g., 2-4), K is relatively large (e.g., 20-40),

and m is particularly large (e.g., 10,000). Therefore, m

is not a big concern,

while K2 and n? are big concerns. Complexity is for time complexity, and Pref.

denotes whether this method is preference-based or not.

, LibMOON: A Gradient-based MultiObjective

OptimizatioN Library in PyTorch . MO0 solver
* HVGrad
- « MOO-SVGD ...
LibMOON is an open-source library built on PyTorch for gradient based MultiObjective (MOO). See the latest . EPZS_:;a::ver
documentation for detailed introductions and API instructions. . EMf:A-based
e LO

Star or fork us on GitHub — it motivates us a lot!

MOBO solver

* PSL-MOBO
« PSL-DirHVEI
 DirHV-EGO ...

/

F

/

Synthetic
« ZDT
" « DTLZ
« MAF ...

\

Multitask Learning
« Fairness classification
« Multiobjective classification
« Multiobjective machine learning

¢ Rocket injector design

Real World
L * Hatch cover design
¢ Car cab design ...

“LibMOON: A Gradient-based MultiObjective OptimizatioN Library in PyTorch”, Zhang et al., NeurlPS’

24 D&B Track
Github repo: https://qgithub.com/xzhang2523/libmoon
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Summary

Insights and Implications for us:

- The problem of linear scalarization vs MOO for multitask learning
IS model-dependent

- @Good news: with sufficient capacity of the networks, linear
scalarization can represent every Pareto optimal solution

- For linear MTL models under regression tasks we identify a
precise phase-transition g = k
- For nonlinear MTL models we have a (loose) upper bound g = nk

- For under-parametrized models, we can use Chebyshev
scalarization to control the converged PO solution

Open guestions:
- How about linear MTL for classification?

- Is there a similar phase transition phenomenon for nonlinear MTL models?

- Pareto-set learning: a single model/algorithm to learn all the diverse PO
solutions simultaneously 36
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