Learning List-Level Domain-Invariant Representations for Ranking
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Overview and Contributions

Revisit domain adaptation for learning to rank via invariant repre-
sentation learning.

Whereas prior work performs item-level alignment [1, 3, 4], we

e propose list-level alignment, tailored for ranking;

e establish a domain adaptation generalization bound for
ranking based on list-level alignment, and

e demonstrate the its empirical benefits.

Problem and Model Setup, and Invariant Representations

Ranking problems are given by joint distributions u over lists of
items (X1, -+ ,X¢) € X and relevance scores (Y1,---,Y;) € RE,

Goal is to obtain a ranking model for a (low-resource, e.g., unla-
beled) target domain ur, by adapting models trained on a source
domain pis.
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For domain adaptation, we apply invariant representation learn-
ing, which trains the model to align the source and target domain
feature distributions, u% ~ pg, where p“ is a distribution defined
on the vector feature representations, (Z1,--- ,Zp) € Z = Rk,

The intuition is that if the source and target data distributions ap-
pear similar on the feature space, then models trained on them
could transfer across domains.
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Invariant Representation Learning for Ranking
ltem-Level Alignment (ItemDA; prior work)

The implementations in prior work align the distributions of fea-
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ture vectors (items) aggregated from all lists, i.e., g’ X ,
supp(p”©™) ¢ RS, p? () = P((Zy, -+, Ze) D v),

but the list structure on the datais lost from the aggregation step.
List-Level Alignment (ListDA; ours)

To preserve the list structure, we directly align the distributions

of lists of feature vectors, i.e. pZ list p?h“,
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List-level alignment is a stronger requirement than item-level, and
Is justified by a domain adaptation generalization bound:

Theorem (Instantiated for MRR). Under some Lipschitz assump-
tions, let g : X — Z, then for all scoring models h : Z — R,
MRRy(h o g) > MRRs(h o g) — ©(£) Wi (g™, uy ™) — A;

where A, = miny (1 — MRRg(h" o g) + 1 - MRRT(h’ o g)) is the
minimum joint risk on the learned features (recall MRR € (0, 1]),
and Wy Is Wasserstein distance.
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Experiments on Passage Reranking

We adapt RankT5 model [5] from the MS MARCO web search
dataset to news and biomedical domains under unsupervised
setting: on the target domain, only documents are given, and we
synthesize queries from documents using a TS generator [2].

ListDA is compared to zero-shot, I[temDA, and vs. training on
pseudolabels generated by the query synthesizer (QGen PL).

Target domain  Method MAP MRR@10 NDCG@10
BM25 0.2282 0.6801 0.4088
Zero-shot  0.2759 0.7977 0.5340
Robust04 QGen PL 0.2693 0.7644 0.5034
ltemDA 0.2822*T 0.8037° 0.5396"
ListDA 0.2901*'T  0.8234*" 0.5573*™%
BM25 0.2485 0.8396 0.6559
Zero-shot  0.3083 0.9217 0.8200
TREC-COVID QGen PL 0.3180*% 0.8907 0.8118
ltemDA 0.3087 0.9080 0.8142
ListDA 0.3187*% 0.9335 0.8412™
BM25 0.4088 0.5612 0.4653
Zero-shot 0.5008 0.6465 0.5542
BioASQ QGen PL 0.5143*% 0.6551 0.5643%
ltemDA 0.4781 0.6383 0.5343
ListDA 0.5191** 0.6666*F 0.5714*%

*Improves upon zero-shot under the two-tailed Student’s t-test (p <
0.05). TImproves upon QGen PL. *improves upon ItemDA.
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