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Example and Applications

Domain Adaptation/Generalization: mitigating distribution shifts
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Fair Representations: mitigating bias in data
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Learning to Rank: matching query/document distributions
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Research Questions

Question:
Is there any limitation on using invariant representations? If yes,
what is the fundamental tradeoff between utility (accuracy) and
invariance (distribution matching)?
Our Answer: Yes in general, and we can characterize the tradeoft
on an information plane, where the optimal tradeoif depends on the
coupling between the target Y and the attribute A.
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Invariant Representation Learning

Problem Setup: Given a joint distribution g over (X, A,Y), we
would like to learn a (randomized) mapping g : X X A — Z such
that the marginal distribution of 7 is invariant to the attribute A:

P;r(Z | A=a)= P;r(Z), Va € A

X C R? input space of the data
A: attribute space (classification: A = {0, 1}; regression: A = R)
Y label space (classification: Y = {0, 1}; regression: ) = R)

Practical Implementation via Adversarial Training:

min max
g,h h'

Classification: ¢y = £, = cross-entropy loss
Regression: /y = £ 4 = mean-squared error
A: tradeoff parameter: A = 0 (accuracy); A — oo (invariance)

To focus on the fundamental tradeoff, we focus on the noiseless set-
ting and we assume both h and k' have infinite capacity, i.e, they are
perfect predictors.

Classification

Under the noiseless setting, the tradeotf problem has the following
form: maxy_,x 4)1(Y;Z) — M(A; Z). We define the information
plane for classification problems as the feasible region of the tradeott
problem: Rceg :={([(Y;2),1(A; 7)) : Z = g(X,A)}.
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Regression

Under the noiseless setting, the tradeoff problem has the following
form: maxy_,x 4) Var E[Y'|Z] — AVar E|A|Z]. Define the informa-
tion plane for regression problems as the feasible region of the trade-
off problem: Rs := {(VarE|Y|Z|, VarE|A|Z]) : Z = g(X, A)}.

VarE[A | Z]

Var(Y) - poy 7 — X
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py 4 := correlation coefficient between Y and A.

In regression problems, we can also precisely characterize the Pareto
frontier of the following problem:

max VarElY | Z|,

s.t. VarE|A | Z] < ¢

Z=g(X,A)
VarE[A | Z]
Var(A
ar(A) B
i

Equation for the Pareto frontier:

Var E[Y | Z] < Var(Y) (2pya/(1 = g3 a(l = @) + 1 = a = piy + 20p} 4 )

a = c/ Var(A).
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