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Graph Neural Networks (GNNs)

Powerful models for graph-structured data
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Recommender systems, social network, drug discovery etc.

Many applications:

Being able to train GNNs efficiently is an important task!

Challenge: Large-scale Graphs in GNNs

Graph Convolutional Networks (GCNs):
Layer-wise propagation rule: For A ¢ R

HFY = g(AHOW ) HO) = X ¢ R*4

Storage cost:
Matrix A could be large and stored in distributed manner

Fully observing A may be costly or infeasible

Computational cost:

: T . O(n*d)
The matrix multiplication AX requires time

This can be prohibitive in big data settings

Can GNNs avoid quadratic complexity

scaling with n via sampling?

Questions:
How many samples need to be observed?

What graph subsampling strategies are amenable?
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Two-stage Training Algorithm Numerical Results: Run-time Comparison

For regression tasks, lev. score sampling has a nice guarantee

However, computing lev. scores requires the computation of AX

ogbl-ddi 4.3K 1.3M 100 1.49 1.39
ogbn-arxiv 169.3K 1.2M 128 299.48 7.40
Workaround: =
Synthetic data 50.0K 625.0M 500 27.28 5.77
Step 1: Estimate leverage scores Step 2: Use leverage score estimate for training (unssiqn)
- | Synthetic data 100.0K  2.5B 500 107/10 8.97
AX = X ey —> architecture —>Yy (Gaussian)
T Synthetic data 150.0K  5.6B 500 247.70 9.96
§ (Gaussian)
sample O(e ?logn) A.; x Xj.'s w.p. p; S{ample O(de % logn) rows perform a regression task .. .
Vi leverage score sampling Orders of maginitude less wall-clock time:
40x acceleration on our scheme for ogbn-arxiv datasets
Main Result
Numerical Results: Peak Memory Usage
Theorem (informal): With O (nde‘2 log n) observations, y g
¥ — AXW[3 < (1+ ) min |y — AXw]3
in time O (nd”e *logn), with probability 1 — =),
ogbl-ddi 4.3K 1.3M 100 1.49 1.39
ogbn-arxiv 169.3K 1.2M 128 299.48 7.40
Implications: Whend < n, Synthetic data  50.0K  625.0M 500 27.28 577
Gaussian
Speed-up: nd’e *logn < nd ( )
Synthetic data 100.0K  2.5B 500 107/10 8.97
Query complexi’ry gains: nde ?logn < n? (Gaussian)
Synthetic data 150.0K  5.6B 500 247.70 9.96
(Gaussian)
Numerical Results: MSE Compc: Fison Improvements on the memory usage:
T = In the best case, 1414x less memory requirement
T et via gt 1 Semeing of X T ot vi Aot e oTAK
- 84% MSE via Algorithm 2 ool || - 86% MSE via Algorithm 2
) ) Concluding Remark
Two-step training algorithms:
1 -6 7 - " - 73;7774.707 7;5; 6.; - 1074 - m 3:0\ P = p e Step 1: Estimate leverage scores Step 2: Use leverage score estimate for training -9
fraction of graph observed (%) fraction of graph observed (%) — .. = N _X R - . BUdgeT: O <nd€ log n)
T o Tomes _ o —— ——" Run-time: O (nd’c”*logn)
10 4 i EEE ::: E):(;cfrti :E:rfge score sampling of AX I EEE ::: EE(::; EE:;ge score sampling of AX e y S T Error: ||$} — AXWH% S (1 + 6) . m“ifn ||y — AXw||§
I-H103— —}— MSE via GraphSaint inspired sampling N 1 EXtenSionS:
2 2 0%
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\\ Nonlinear GCNs, classification or link prediction tasks?
worws Generalization guarantee?

o Adaptive alglorithms at each gradient descent step?

Datasets: ogbl-ddi (from OGB), ego-Facebook (from SNAP), House dataset
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