

Efficient Learning of Linear Graph Neural Networks via Node Subsampling

Seiyun Shin, Ilan Shomorony, and Han Zhao University of Illinois at Urbana-Champaign

Graph Neural Networks (GNNs)

Powerful models for graph-structured data

- Many applications:
 - Recommender systems, social network, drug discovery etc.

Being able to train GNNs efficiently is an important task!

Challenge: Large-scale Graphs in GNNs

Graph Convolutional Networks (GCNs): Layer-wise propagation rule: For $A \in \mathbb{R}^{n \times n}$

$$H^{(\ell+1)} = \sigma(AH^{(\ell)}W^{(\ell)}), H^{(0)} = X \in \mathbb{R}^{n \times d}$$

- Storage cost:
 - $\ \square$ Matrix A could be large and stored in distributed manner
 - $\ \square$ Fully observing A may be costly or infeasible
- Computational cost:
 - lacksquare The matrix multiplication $A\!X$ requires $O(n^2d)$ time
 - This can be prohibitive in big data settings

Can GNNs avoid quadratic complexity scaling with *n* via sampling?

Questions:

- How many samples need to be observed?
- What graph subsampling strategies are amenable?

Two-stage Training Algorithm

For regression tasks, lev. score sampling has a nice guarantee However, computing lev. scores requires the computation of $A\!X$

Workaround:

Main Result

Theorem (informal): With $O\left(nd\epsilon^{-2}\log n\right)$ observations, $\|\tilde{\mathbf{y}}-\tilde{A}X\tilde{\mathbf{w}}\|_2^2 \leq (1+\epsilon)\cdot \min_{\mathbf{w}}\|\mathbf{y}-AX\mathbf{w}\|_2^2$ in time $O\left(nd^2\epsilon^{-2}\log n\right)$, with probability $1-n^{-\Omega(1)}$.

- □ Implications: When $d \ll n$,
 - □ Speed-up: $nd^2\epsilon^{-2}\log n \ll n^2d$
 - \square Query complexity gains: $nd\epsilon^{-2}\log n \ll n^2$

Numerical Results: MSE Comparison

Numerical Results: Run-time Comparison

Dataset	# Nodes	# Edges	# Features	Wall-clock time (sec)	
				full AX	Our scheme and lev. score sampling
ogbl-ddi	4.3K	1.3M	100	1.49	1.39
ogbn-arxiv	169.3K	1.2M	128	299.48	7.40
Synthetic data (Gaussian)	50.0K	625.0M	500	27.28	5.77
Synthetic data (Gaussian)	100.0K	2.5B	500	107/10	8.97
Synthetic data (Gaussian)	150.0K	5.6B	500	247.70	9.96

- Orders of maginitude less wall-clock time:
 - 40x acceleration on our scheme for ogbn-arxiv datasets

Numerical Results: Peak Memory Usage

Dataset	# Nodes	# Edges	# Features	Wall-clock time (sec)	
				full AX	Our scheme and lev. score sampling
ogbl-ddi	4.3K	1.3M	100	1.49	1.39
ogbn-arxiv	169.3K	1.2M	128	299.48	7.40
Synthetic data (Gaussian)	50.0K	625.0M	500	27.28	5.77
Synthetic data (Gaussian)	100.0K	2.5B	500	107/10	8.97
Synthetic data (Gaussian)	150.0K	5.6B	500	247.70	9.96

- Improvements on the memory usage:
 - In the best case, 1414x less memory requirement

Concluding Remark

Two-step training algorithms:

- Extensions:
 - Nonlinear GCNs, classification or link prediction tasks?
- Generalization guarantee?
- Adaptive alglorithms at each gradient descent step?