# **Trade-offs and Guarantees of Adversarial Representation** Learning for Information Obfuscation

Jianfeng Chi<sup>§</sup>\* Han Zhao<sup>†</sup>\*, Yuan Tian<sup>§</sup>, Geoffrey J. Gordon<sup>†</sup> <sup>§</sup>University of Virginia, <sup>†</sup>Carnegie Mellon University {jc6ub,yuant}@virginia.edu, {han.zhao,ggordon}@cs.cmu.edu \* equal contribution

#### Overview

**Learning Representations that Obfuscate Sensitive Attributes:** 



#### **Question:**

Can we prevent the information leakage of the sensitive attribute while still maximizing the task accuracy? Furthermore, what is the fundamental trade-off between attribute obfuscation and accuracy maximization in the minimax prob*lem?* 

#### Preliminaries

**Utility:** 

$$\operatorname{Acc}(h) := 1 - \mathbb{E}_{\mathcal{D}}[|Y - h(X)|]$$

**Attribute Inference Advantage:** 

 $\mathsf{ADV}(\mathcal{H}_A) := \max_{h_A \in \mathcal{H}_A} \left| \Pr_{\mathcal{D}}(h_A(X) = 1 \mid A = 1) - \Pr_{\mathcal{D}}(h_A(X) = 1 \mid A = 0) \right|$ 

- ADV<sub>A</sub>(h) = 0 iff I(h(X); A) = 0 and ADV<sub>A</sub>(h) = 1 iff h(X) = Aalmost surely or h(X) = 1 - A
- ADV $(\mathcal{H}_A)$  + min<sub> $h_A \in \mathcal{H}_A$ </sub> Pr $(h_A(X) = 0 \mid A = 1)$  + Pr $(h_A(X) = 1 \mid A = 1)$ A = 0 = 1 if  $\mathcal{H}_A$  is symmetric: the larger the attribute inference advantage of  $\mathcal{H}_A$ , the smaller the minimum sum of Type-I and Type-Il error under attacks from  $\mathcal{H}_A$ .



### Theoretical Analysis

#### **Formal Guarantees against Attribute Inference**

 $\min_{h\in\mathcal{H},f}\max_{h_{A}\in\mathcal{H}_{A}} \widehat{\operatorname{Err}}(h\circ f) - \lambda \big( \Pr(h_{A}(f)) \big) \big)$  $+ \Pr(h_A)$ 

In practice, we have:

 $\min_{h \in \mathcal{H}, f} \max_{h_A \in \mathcal{H}_A} \mathsf{CE}_{Y}(h \circ f) - \lambda$ 

#### Theorem:

Let  $f^*$  be the optimal feature map such that  $f^* = \arg \min H(Y \mid Z = I)$ f(X)) –  $\lambda H(A \mid Z = f(X))$  and define  $H^* := H(A \mid Z = f^*(X))$ . Then for any adversary  $\widehat{A}$  such that  $I(\widehat{A}; A \mid Z) = 0$ , we have

 $\Pr_{\mathcal{T}^{f^*}}(\widehat{A} \neq A) \geq H^*/2\lg(6/H^*).$ 

**Implication:** If the obfuscated representation Z contains little information on A, then the inference error made by any adversary has to be large.

#### Inherent trade-off between Accuracy Maximization and Attribute Obfuscation

**Theorem:** Let  $\mathcal{H} \subseteq 2^{\mathcal{Z}}$  contains all the measurable functions from  $\mathcal{Z}$  to  $\{0,1\}$  and  $\mathcal{D}_0^Y$ ,  $\mathcal{D}_1^Y$  be two distributions over  $\mathcal{Y}$  conditioned on A = 0 and A = 1 respectively. Assume the Markov chain  $X \xrightarrow{f} Z \xrightarrow{h} \widehat{Y}$  holds, If  $ADV(\mathcal{H}_A \circ f) \leq D_{JS}(\mathcal{D}_0^Y, \mathcal{D}_1^Y)$ , then  $\forall h \in \mathcal{H}$ , we have

$$\operatorname{Err}_0(h \circ f) + \operatorname{Err}_1(h \circ f) \geq rac{1}{2} (d_{\operatorname{JS}}(\mathcal{D}_0^Y, \mathcal{D}_1^Y) - \sqrt{\operatorname{ADV}(\mathcal{H}_A \circ f)})^2.$$

**Implication:** If the label and the sensitive attribute are highly correlated, we cannot obfuscate the sensitive attribute while still maximizing the task accuracy simultaneously.



$$(X)) = 0 | A = 1)$$
  
(1)  
 $(f(X)) = 1 | A = 0))$ 

$$\cdot \operatorname{CE}_{A}(h_{A} \circ f) \tag{2}$$

#### Empirical Results

(1) Income prediction on the UCI Adult dataset with sensitive attributes: gender, age, and education; (2) Gender estimation on UTKFace dataset with sensitive attributes: age and race.



- approaches;
- obfuscation exist for all methods;

**Conclusion:** The adversarial representation learning approaches achieve the best trade-offs in terms of attribute obfuscation and accuracy maximization.

## **NEURAL INFORMATION PROCESSING SYSTEMS**

The formal guarantees hold for all representation learning based

Inherent trade-offs between accuracy maximization and attribute

Compared to DP-related methods, adversarial representation learning based approaches leads to better trade-offs;