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Incompatibility between Definitions of Fairness

COMPAS (Northpointe): gz "Ry e oo

Recidivism risk assessment
tool used in a county In
Florida

Machine Bias

There's software used across the country to predict future criminals.
And it's biased against blacks.

by Julia Angwin, Jeff Larson, Surya Mattu and Lauren Kirchner, ProPublica
May 23, 2016

Figure credit: ProPublica, Larson et al., 2016
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Incompatibility between Definitions of Fairness

COMPAS (high level):

prior arrests
prior sentences

O age

drug history
— | e IJ::> COMPAS
age at first arrest

education history

Defendant vocation history

gender

Risk score: C'(x) € (0, 1)
- Risk score ~ likelihood of defendant to recidivate
- Inputs have (noisy) true label: 0 (not recidivate) / 1 (will recidivate)

- The risk score + thresholding: 0 (low risk) / 1 (high risk)
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Incompatibility between Definitions of Fairness

ProPublica criticism:

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn't Re-Offend

Labeled Lower Risk, Yet Did Re-Offend

Overall, Northpointe’s assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely
as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much
more likely than blacks to be labeled lower risk but go on to commit other crimes.

Carnegie Mellon University Source: ProPublica, Larson et al., 2016 4
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ProPublica criticism:

Labeled Higher Risk, But Didn't Re-Offend

WHITE

AFRICAN AMERICAN

Labeled Lower Risk, Yet Did Re-Offend

28.0%

Overall, Northpointe’s assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely
as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much

more likely than blacks to be labeled lower risk but go on to commit other crimes.

- Black defendants more likely than white to be incorrectly labeled “high risk”
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Incompatibility between Definitions of Fairness

ProPublica criticism:

WHITE AFRICAN AMERICAN

Labeled Higher Risk, But Didn’t Re-Offend .
Labeled Lower Risk, Yet Did Re-Offend 28 0%

Overall, Northpointe’s assessment tool correctly predicts recidivism 61 percent of the time. But blacks are almost twice as likely
as whites to be labeled a higher risk but not actually re-offend. It makes the opposite mistake among whites: They are much
more likely than blacks to be labeled lower risk but go on to commit other crimes.

- Black defendants more likely than white to be incorrectly labeled “high risk”
- White defendants more likely than black to be incorrectly labeled “low risk”

Bias: Disparate FPR/FNR across groups!
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Incompatibility between Definitions of Fairness

Northpointes’ defense:

Defendants labeled as “high risk” equally likely to recidivate,
regardless of race
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Incompatibility between Definitions of Fairness

Northpointes’ defense:

Defendants labeled as “high risk” equally likely to recidivate,
regardless of race

@
w =D R = fisscoe: Ca) € (0.1

Defendant
- The COMPAS tool C(x) is statistically calibrated by group

- Let A € {0, 1} be the group membership (race), Y € {0, 1} be
the true label (recidivism), then

Va € {0,1},Ve e (0,1), Pr(Y =1|C(x)=c,A=a)=c

No Bias: Equal treatment!
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Incompatibility between Definitions of Fairness

Fundamental incompatibility between different notions of
fairness:

True label: Y € {0,1}
Group membership: A € {0,1}
Probabilistic classifier: ¥ ¢ (0, 1) or binary classifier: Y € {0,1}
Baserate: Pr(Y =1| A=a), a € {0,1}
Difference of base rates:
Apr=|Pr(Y =1|A=0)-Pr(Y =1|A=1)
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Incompatibility between Definitions of Fairness

Fundamental incompatibility between different notions of
fairness:

True label: Y € {0,1}
Group membership: A € {0,1}
Probabilistic classifier: Y ¢ (0, 1) or binary classifier: Y € {0,1}
Baserate: Pr(Y =1| A=a), a € {0,1}
Difference of base rates:
Apr = |Pr(Y =1|A=0)-Pr(Y =1|A=1)

Theorem (Chouldechova’17, Kleinberg, Mullainathan, Raghavan’16):
Statistical calibration and Equalized FPR/FNR cannot hold simultaneously
unless Agr =0 (A | Y)orYy = Y (perfect prediction).
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Lesson learned:
Depending on the problem, choose the appropriate criterion

Carnegie Mellon University



Incompatibility between Definitions of Fairness

Lesson learned:
Depending on the problem, choose the appropriate criterion

But, there are just too many definitions...

Carnegie Mellon University



Incompatibility between Definitions of Fairness

Lesson learned:
Depending on the problem, choose the appropriate criterion
But, there are just too many definitions...

() tr Napmenen @ -
| wrote up a 2-pager titled "21 fairness
definitions and their politics" based on
the tweetstorm below and it was
accepted at a tutorial for the Conference
on Fairness, Accountability, and
Transparency!

Here it is (with minor edits):
docs.google.com/document/d/1bn ...
See you on Feb 23/24.

Arvind Narayanan @ @random_walker

When | tell my computer science colleagues that there are so many fairness
definitions, they are often surprised and/or confused. [Thread]
twitter.com/random_walker/...

BRI EBML
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Definition Paper gltatlon
Group fairness or statistical parity | [12] 208
Conditional statistical parity [11] 29
Predictive parity [10] 57
False positive error rate balance | [10] 57
False negative error rate balance | [10] 57
Equalised odds [14] 106
Conditional use accuracy equality | [8] 18
Overall accuracy equality [8] 18
Treatment equality [8] 18
Test-fairness or calibration [10] 57
WEell calibration [16] 81
Balance for positive class [16] 81
Balance for negative class [16] 81
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Fairness vs Utility

Statistical parity (demographic parity):

Y 1 A
The prediction given by an algorithm shouldn’t take the sensitive
attribute A into account

- College admission: affirmative action
- Movie recommendation
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Fairness vs Utility

Statistical parity (demographic parity):

Y 1 A
The prediction given by an algorithm shouldn’t take the sensitive
attribute A into account

- College admission: affirmative action
- Movie recommendation

How to achieve statistical parity while preserving utility?

Carnegie Mellon University
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Fairness vs Utility

Statistical parity (demographic parity): Y 1A
Y LA IY;A)=0Pr(Y |A=0)=Pr(Y | A=1)

So it suffices if we could learn invariant representations Z that is

independent of A, then any predictor Y upon Z should be
independent of A as well
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Fairness vs Utility

Statistical parity (demographic parity): Y LA
Y LA IY;A)=0Pr(Y |A=0)=Pr(Y | A=1)

So it suffices if we could learn invariant representations Z that is
independent of A, then any predictor Y upon Z should be

independent of A as well
/ \ / Predict \
Predict Label Sensitive
Attrlbute

Negatlve Gradient

minmax ey(hog)—A-c4(h’ og)

Data Decisions and Theoretical Implications when Adversarially Learning Fair Representations, Beutel et al. FAT/ML 2017

Carnegie Mellon University
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Fairness vs Utility

Minimax optimization formulation:

minmax ey(hog)—A-c4(h’ og)
h,g h'

In practice, the loss function &(-) is often chosen as the cross-
entropy loss

Predict
Predict Label Sensitive
y Attribute
z
A
ega
A\ 4 \ A

A

A
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Fairness vs Utility

Minimax optimization formulation:

minmax ey(hog)—X-e4(h’ og)
h,g h'

In practice, the loss function &(-) is often chosen as the cross-
entropy loss

- Shared representations Z = 9(X)
- For any fixed Z = Q(X), the optimal h,h'is given by the corresponding

conditional distribution
/ \ / Predict \
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y Attribute

A
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Fairness vs Utility

Minimax optimization formulation:

minmax ey(hog)—X-e4(h’ og)
h,g h'

In practice, the loss function &(-) is often chosen as the cross-
entropy loss

- Shared representations Z = 9(X)

- For any fixed Z = Q(X), the optimal h,h'is given by the corresponding
conditional distribution

h(Z) — Pr(Y — 1 | Z); h/(Z) — Pr(A — 1 | Z) /PredictLabel\/ SI:r:s(lﬁl\;[e \

z

A

=_—
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Fairness vs Utility

Simplified optimization:

min @ HY |Z)—X-H(A|Z)
Z=9(X)

Clearly, the optimal solution depends on the “coupling” between A)Y:

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
Carnegie Mellon University
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Fairness vs Ulllity

Simplified optimization:
min @ HY |Z)—X-H(A|Z)
Z=g(X)

Clearly, the optimal solution depends on the “coupling” between A)Y:

- If A=Y, a.s.,then we cannot hope to find a good tradeoff

- If A LY, then we can preserve information about Y while filtering
out information related to A

In general, tradeoff exists between fairness and utility

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
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Fairness vs Ulllity

Theorem: If Y = (ko 9)(X) satisfies statistical parity, then
Errg(hog)+ Erri(hog) > Agr

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
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Errg(hog)+ Erri(hog) > Agr

- Erra(h o g) is the true binary classification error conditioned on group A = a

- RecallApr = |Pr(Y =1|A=0) —Pr(Y =1| A=1)| measures the difference of
the base rates

- Interpretation: cannot simultaneously minimize errors on both groups, has to
sacrifice accuracy on one of the (minority) group if we enforce statistical parity
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Fairness vs Utility

Theorem: If Y = (h o 9)(X) satisfies statistical parity, then
Errg(hog)+ Erri(hog) > Agr

- Erra(h o g) is the true binary classification error conditioned on group A = a

- RecallApr = |Pr(Y =1|A=0) —Pr(Y =1| A=1)| measures the difference of
the base rates

- Interpretation: cannot simultaneously minimize errors on both groups, has to
sacrifice accuracy on one of the (minority) group if we enforce statistical parity

- If A=Y, then Agr = 1, meaning max{Erro(h o g),Erri(hog)} > 0.5

- If A LY, then Asr =0, lower bound gracefully degrades to 0, i.e., no
constraint on utility

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
Carnegie Mellon University "



Fairness vs Ulllity

Approximate version exists as well, consider:
g h O
X — 4 —Y

Then the following lower bounds hold:

AN

Errg(hog)+ Erri(hog) > Agr — App(Y)

where
App(Y)=Pr(Y =1|A=0)-Pr(Y =1|A=1)

IS an approximate version of statistical parity (demographic parity)

AN AN AN ’

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
Carnegie Mellon University
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Fairness vs Ulllity

Approximate version exists as well, consider:
g h O
X — 4 —Y

Define f-divergence between distribution P and ©:

Dy(P | @ =Eo | (5]

where f(1) =0 and is convex

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
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Fairness vs Ulllity

Approximate version exists as well, consider:

A

h
XL 7-5Y
Define f-divergence between distribution P and ©:

Dy(P | @ =Eo | (5]

where f(1) =0 and is convex

Name Ds(P || Q) Generator f(t) Symm. Tri
Kullback-Leibler Dk (P || Q) tlogt X X
Reverse-KL Dk (Q || P) —log t X X
Jensen-Shannon  Dis(P, Q) := = (Dk(P||M) + DxL(Q||M)) tlogt — (¢t + 1) log(EE) v X
Squared Hellinger H?*(P, Q) := % [(V/dP — v/dQ)? (1 —+/1)?/2 v X
Total Variation  drv(P, Q) :=supg |P(E) — Q(FE)| it —1]/2 v v

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
Carnegie Mellon University
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Fairness vs Ulllity

Approximate version exists as well, consider:

X -2y z7 My

We can also measure the tradeoff in terms of invariant representations:

(Informal) If 940 and 9:P1 are sufficient close to each other, then:
Total variation lower bound:
Erro(h o g) + Erri(hog) = drv (Do(Y),D1(Y)) — drv (9#Do, g#D1)
Jensen-Shannon lower bound:
Erro(h o g) + Erry(ho g) > (dys (Do(Y), D1(Y)) — dis (94#Do, 94D1))” /2

Hellinger lower bound:
Errg(h o g) + Erry(ho g) > (H (Do(Y),D1(Y)) — H (94Do, gsD1))° /2

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
Carnegie Mellon University
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Fairness vs Ulllity

Approximate version exists as well, consider:
g h
X —Z —Y

We can also measure the tradeoff in terms of invariant representations:
(Informal) If 940 and 9:P1 are sufficient close to each other, then:
Total variation lower bound:
Erro(h o g) + Erri(hog) = drv (Do(Y),D1(Y)) — drv (9#Do, g#D1)
Jensen-Shannon lower bound:
Erro(h o g) + Erry(h o g) > (dss (Do(Y), D1(Y)) — dys (9 Do, g4 D1))’ /2

Hellinger lower bound:
Errg(h o g) + Erry(ho g) > (H (Do(Y),D1(Y)) — H (94Do, gsD1))° /2

The more invariant the representations, the worse the joint error

Inherent Tradeoffs in Learning Fair Representations, Zhao et al., NeurlPS’19
Carnegie Mellon University
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Experiments

Income Prediction: Adult dataset

- Train/Test: 30,162/15,060 adults information collected in a
1994 census

- Target variable: Y = 1 iff annual income > 50K
- Sensitive variable: 4 — ()/1= Male/Female
- Other attributes: age, education, etc.

- Base rates are different across groups:
Pr(Y =1|A=0)=0.310 Pr(Y =1]|A=1)=0.113
- Imbalanced marginal distribution:
Pr(A=0)=0.673

Carnegie Mellon University
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