Inherent Tradeoffs in Learning Fair Representations

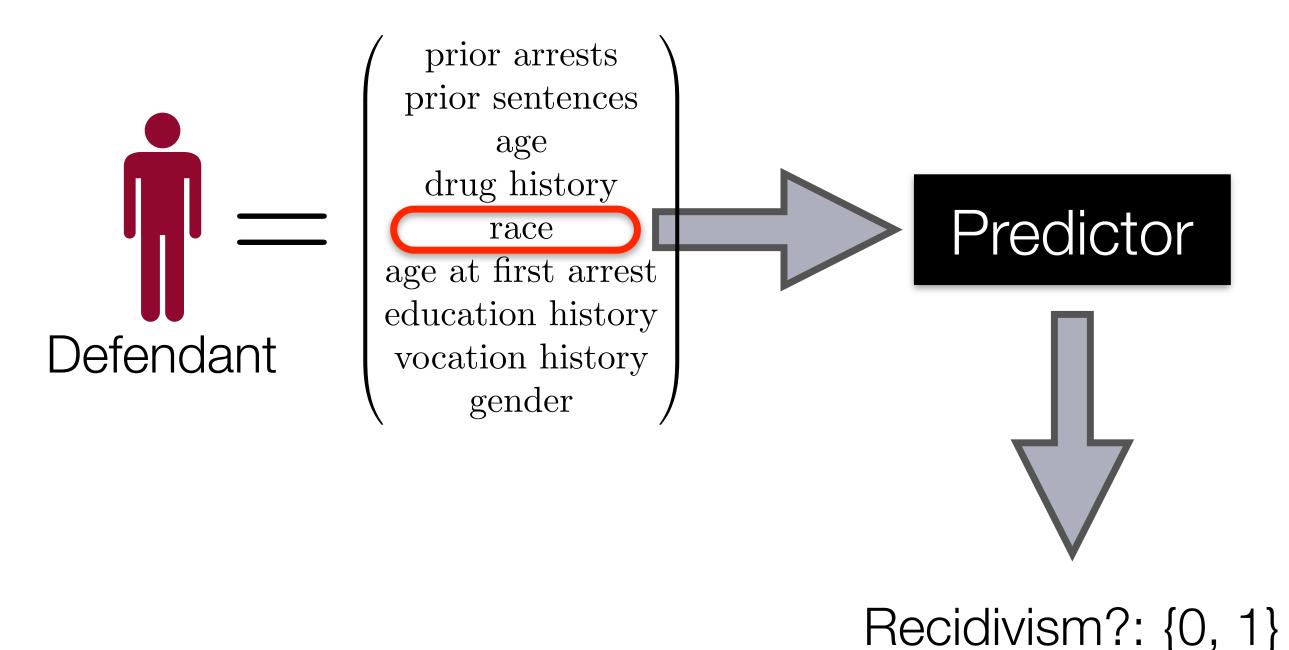
Han Zhao[†], Geoffrey J. Gordon^{†,‡}

[†]Carnegie Mellon University, [‡]Microsoft Research Montreal

han.zhao@cs.cmu.edu, geoff.gordon@microsoft.com

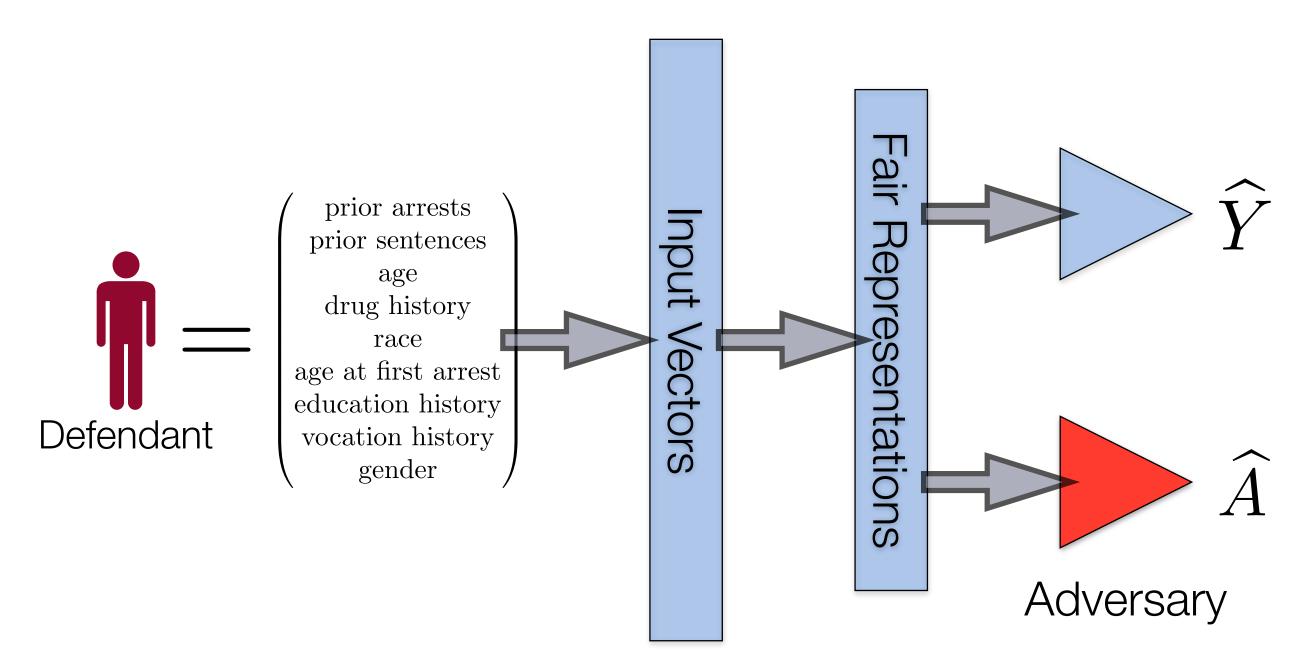
Overview

Recidivism Prediction:



- Joint distribution \mathcal{D} over input $X \in \mathbb{R}^d$, label $Y \in \{0, 1\}$ and sensitive attribute $A \in \{0, 1\}$.
- A (randomized) classifier $\widehat{Y} = h(g(X)) \in \{0, 1\}$.
- Feature mapping $g: \mathcal{X} \to \mathcal{Z}$.
- A classifier is said to be *fair*, or satisfy *statistical parity* if: $\Pr_{\mathcal{D}}(\widehat{Y} = 1 \mid A = 0) = \Pr_{\mathcal{D}}(\widehat{Y} = 1 \mid A = 1) \Leftrightarrow \widehat{Y} \perp A$.
- Base rate: $\Pr(Y = 1 \mid A = a), a \in \{0, 1\}.$ $\Delta_{\text{BR}} := |\Pr(Y = 1 \mid A = 0) - \Pr(Y = 1 \mid A = 1)|.$

Learning Fair Representations:



• Representations compete with the adversary to confuse the latter.

Question:

What is the fundamental tradeoff between fairness and utility? How fair representations affect utility and fairness of the predictor?

Our Answer: When the base rates differ, any fair classifier has to make a large error on at least one of the demographic group.

Preliminary

Demographic Parity Gap (DP Gap):

$$\Delta_{\mathrm{DP}}(\widehat{Y}) := |\mathcal{D}_0(\widehat{Y} = 1) - \mathcal{D}_1(\widehat{Y} = 1)|.$$

- $\mathcal{D}_a(\cdot) = \Pr_{\mathcal{D}}(\cdot \mid A = a), \forall a \in \{0, 1\}.$
- $\Delta_{\mathrm{DP}}(Y) = \Delta_{\mathrm{BR}}$, by definition.

Accuracy Parity: $\operatorname{Err}_{\mathcal{D}_0}(\widehat{Y}) = \operatorname{Err}_{\mathcal{D}_1}(\widehat{Y})$.

• $\operatorname{Err}_{\mathcal{D}}(\widehat{Y}) = \mathbb{E}_{\mathcal{D}}[Y \neq \widehat{Y}].$

f-divergence: Let \mathcal{P} and \mathcal{Q} be two probability distributions over the same space and assume \mathcal{P} is absolutely continuous w.r.t. \mathcal{Q} ($\mathcal{P} \ll \mathcal{Q}$). Then for any convex function $f:(0,\infty)\to\mathbb{R}$ that is strictly convex at 1 and f(1)=0, the f-divergence of \mathcal{Q} from \mathcal{P} is defined as

$$D_f(\mathcal{P} \mid\mid \mathcal{Q}) := \mathbb{E}_{\mathcal{Q}} \left[f\left(\frac{d\mathcal{P}}{d\mathcal{Q}}\right) \right].$$

The function f is called the generator function of $D_f(\cdot || \cdot)$.

Name	$D_f(\mathcal{P} \mid\mid \mathcal{Q})$	f(t)	Symm.	Tri.
Kullback-Leibler	$D_{\mathrm{KL}}(\mathcal{P} \mid\mid \mathcal{Q})$	$t \log t$	X	X
Reverse-KL	$D_{\mathrm{KL}}(\mathcal{Q} \mid\mid \mathcal{P})$	$-\log t$	X	X
Jensen-Shannon	$D_{ extsf{JS}}(\mathcal{P},\mathcal{Q})$	$t \log t - (t+1) \log(\frac{t+1}{2})$		X
Squared Hellinger	$H^2(\mathcal{P},\mathcal{Q})$	$(1 - \sqrt{t})^2/2$		X
Total Variation	$d_{\text{TV}}(\mathcal{P}, \mathcal{Q})$	t - 1 /2		√

Tradeoff between Utility and Fairness

Theorem: Let $\widehat{Y} = h(g(X))$ be the predictor. If \widehat{Y} satisfies statistical parity, then $\operatorname{Err}_{\mathcal{D}_0}(h \circ g) + \operatorname{Err}_{\mathcal{D}_1}(h \circ g) \geq \Delta_{\operatorname{BR}}(\mathcal{D}_0, \mathcal{D}_1)$.

- If A = Y a.s., then $\Delta_{\text{BR}}(\mathcal{D}_0, \mathcal{D}_1) = 1$ and $\text{Err}_{\mathcal{D}_0}(h \circ g) + \text{Err}_{\mathcal{D}_1}(h \circ g) \geq 1$.
- If $A \perp Y$, then $\Delta_{\text{BR}}(\mathcal{D}_0, \mathcal{D}_1) = 0$ and $\text{Err}_{\mathcal{D}_0}(h \circ g) + \text{Err}_{\mathcal{D}_1}(h \circ g) \geq 0$, i.e., no constraint on utility.
- The lower bound is tight, in the sense that there exists problem instances where the equality holds.

Implication: When the base rates differ between different demographic groups, then any fair algorithm has to make an error of at least $\Delta_{\text{BR}}(\mathcal{D}_0, \mathcal{D}_1)/2$ on one of the groups.

Tradeoff in Fair Representation Learning

Induced distribution by feature mapping g:

Given a feature mapping $g: \mathcal{X} \to \mathcal{Z}$, define $g_{\sharp}\mathcal{D} := \mathcal{D} \circ g^{-1}$ to be the induced distribution (pushforward) of \mathcal{D} under g, i.e., for any event $E' \subseteq \mathcal{Z}$, $g_{\sharp}\mathcal{D}(E') := \mathcal{D}(g^{-1}(E')) = \mathcal{D}(\{x \in \mathcal{X} \mid g(x) \in E'\})$.

Theorem: Assume $d_{JS}(g_{\sharp}\mathcal{D}_{0},g_{\sharp}\mathcal{D}_{1}) \leq d_{JS}(\mathcal{D}_{0}(Y),\mathcal{D}_{1}(Y))$ and $H(g_{\sharp}\mathcal{D}_{0},g_{\sharp}\mathcal{D}_{1}) \leq H(\mathcal{D}_{0}(Y),\mathcal{D}_{1}(Y))$, then the following hold:

• Total variation lower bound:

$$\operatorname{Err}_{\mathcal{D}_{0}}(h \circ g) + \operatorname{Err}_{\mathcal{D}_{1}}(h \circ g) \geq d_{\text{TV}}(\mathcal{D}_{0}(Y), \mathcal{D}_{1}(Y)) - d_{\text{TV}}(g_{\sharp}\mathcal{D}_{0}, g_{\sharp}\mathcal{D}_{1}).$$

Jensen-Shannon lower bound:

$$\operatorname{Err}_{\mathcal{D}_{0}}(h \circ g) + \operatorname{Err}_{\mathcal{D}_{1}}(h \circ g) \geq \left(d_{JS}(\mathcal{D}_{0}(Y), \mathcal{D}_{1}(Y)) - d_{JS}(g_{\sharp}\mathcal{D}_{0}, g_{\sharp}\mathcal{D}_{1})\right)^{2}/2.$$

• Hellinger lower bound:

$$\operatorname{Err}_{\mathcal{D}_0}(h \circ g) + \operatorname{Err}_{\mathcal{D}_1}(h \circ g) \ge \left(H(\mathcal{D}_0(Y), \mathcal{D}_1(Y)) - H(g_{\sharp}\mathcal{D}_0, g_{\sharp}\mathcal{D}_1)\right)^2/2.$$

Fair Representations Lead to Accuracy Parity:

Theorem: For any hypothesis $\mathcal{H} \ni h : \mathcal{X} \to \mathcal{Y}$, the following inequality holds:

$$|\operatorname{Err}_{\mathcal{D}_0}(h) - \operatorname{Err}_{\mathcal{D}_1}(h)| \le n_{\mathcal{D}_0} + n_{\mathcal{D}_1} + d_{\text{TV}}(\mathcal{D}_0(X), \mathcal{D}_1(X)) + \min \{\mathbb{E}_{\mathcal{D}_0}[|h_0^* - h_1^*|], \mathbb{E}_{\mathcal{D}_1}[|h_0^* - h_1^*|]\}.$$

- $n_{\mathcal{D}_a}$, $a \in \{0, 1\}$: the noise over distribution \mathcal{D}_a .
- h_a^* , $a \in \{0, 1\}$: the optimal predictor over distribution \mathcal{D}_a .

Experiments

Income prediction on the Adult dataset, sensitive attribute: gender.

