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Overview

Recidivism Prediction:
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Recidivism?: {0, 1}

Joint distribution D over input X € R, label Y € {0,1} and
sensitive attribute A € {0, 1}.

A (randomized) classifier Y = h(g(X)) € {0,1}.

Feature mapping g : X — Z.

A claisiﬁer 1s said to be fair,Aor satisty Statisticai parity if:
PrplY =1|A=0)=Prp(Y =1|A=1) <Y L A
Baserate: Pr(Y =1| A=a),a € {0,1}.

Agr = |Pr(Y =1|A=0)—-Pr(Y =1 A=1)|.

Learning Fair Representations:
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Representations compete with the adversary to confuse the latter.

Question:
What is the fundamental tradeoff between fairness and utility?
How fair representations affect utility and fairness of the
predictor?

Our Answer: When the base rates differ, any fair classifier has to
make a large error on at least one of the demographic group.
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Preliminary

Demographic Parity Gap (DP Gap):
ADP(?) L= ‘DO(? — 1) — Dl(? — 1)‘

D,(-) =Prp(- | A=a),Va € {0,1}.
App(Y) = Apg, by definition.

Accuracy Parity: Errp (Y) = Errp, (V).
Errp(Y) = EplY #Y].

f-divergence: Let P and O be two probability distributions over the
same space and assume P is absolutely continuous w.r.t. Q (P < Q).
Then for any convex function f : (0, co) — R that is strictly convex at

1 and f(1) = 0, the f-divergence of O from P is defined as

D/(P | Q) =Eo|f(55)|

dQ
The function f is called the generator function of D(- || -).
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Name DiP(Q) /(1

Symm. Tri.

Kullback-Leibler Dy (P || Q) tlogt

Reverse-KL DxL(Q || P) —logt
Jensen-Shannon Dys(P, Q) tlogt — (t+ 1)log(tF) v
Squared Hellinger H*(P, Q) (1 — /1)?/2 v/
Total Variation  dry(P, Q) |t —1]/2 v

X
X

X X X %

Tradeoff between Utility and Fairness

Theorem: Let Y = h(g(X)) be the predictor. If Y satisfies statistical
parity, then Errp (h o g) + Errp,(h o g) > Apr(Dy, D).

If A=Y a.s., then Agr(Dy,D;) =1 and
Errp,(h o g) + Errp,(ho g) > 1.

If ALY, then ABR(DO, Dl) = (0 and
Errp, (h o g) + Errp,(h o g) > 0, i.e., no constraint on utility.

The lower bound is tight, 1in the sense that there exists problem
instances where the equality holds.

Implication: When the base rates differ between different demo-
graphic groups, then any fair algorithm has to make an error of at
least Agr(Dy, D1)/2 on one of the groups.
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Tradeoff in Fair Representation Learning

Induced distribution by feature mapping ¢:

Given a feature mapping g : X — Z, define ¢:D := D o g~ to be the
induced distribution (pushforward) of D under g, 1.e., for any event
E'C Z,¢D(E') =D(g (F') =D({z € X | g(z) € E'}).
Theorem: Assume djs(¢:Do, ¢sD1) < dis(Do(Y),D1(Y)) and
H(gDy, gsD1) < H(Do(Y), D1(Y)), then the following hold:

Total variation lower bound:

Errp,(h o g)+Errp,(ho g) >
drv(Do(Y'), D1(Y')) — drv(9: Dy, 9:D1).

Jensen-Shannon lower bound:
rrp, (hog) >

2
(dis(Do(Y), Di(Y)) — dis(9¢Do, 9:D1)) " /2.

Hellinger lower bound:

Errp,(h o g)+

Errp,(h o g)+Errp,(hog) >
2
(H(Do(Y), D1(Y)) — H(g:Dy, g:D1)) /2.
Fair Representations Lead to Accuracy Parity:
Theorem: For any hypothesis H > h : & — )/, the following in-
equality holds:
Errp, (h) — Errp, (h)| < np, + np, + drv(Do(X ), D1(X))
+min {Ep||hg — hil], Ep,|[hg — hil]} .

np., a € {0,1}: the noise over distribution D,,.

h¥, a € {0,1}: the optimal predictor over distribution D,,.

Experiments
Income prediction on the Adult dataset, sensitive attribute: gender.
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