
A Proof of SPNs as Mixture of Trees

Theorem 1. If T is an induced SPN from a complete and decomposable SPN S , then T is a tree that
is complete and decomposable.

Proof. Argue by contradiction that T is not a tree, then there must exist a node v 2 T such that v has
more than one parent in T . This means that there exist at least two paths R, p1, . . . , v and R, q1, . . . , v
that connect the root of S(T), which we denote by R, and v. Let t be the last node in R, p1, . . . , v
and R, q1, . . . , v such that R, . . . , t are common prefix of these two paths. By construction we know
that such t must exist since these two paths start from the same root node R (R will be one candidate
of such t). Also, we claim that t 6= v otherwise these two paths overlap with each other, which
contradicts the assumption that v has multiple parents. This shows that these two paths can be
represented as R, . . . , t, p, . . . , v and R, . . . , t, q, . . . , v where R, . . . , t are the common prefix shared
by these two paths and p 6= q since t is the last common node. From the construction process defined
in Def. 2, we know that both p and q are children of t in S . Recall that for each sum node in S , Def. 2
takes at most one child, hence we claim that t must be a product node, since both p and q are children
of t. Then the paths that t ! p v and t ! q v indicate that scope(v) ✓ scope(p) ✓ scope(t)
and scope(v) ✓ scope(q) ✓ scope(t), leading to ? 6= scope(v) ✓ scope(p) \ scope(q), which is
a contradiction of the decomposability of the product node t. Hence as long as S is complete and
decomposable, T must be a tree.

The completeness of T is trivially satisfied because each sum node has only one child in T . It is
also straightforward to verify that T satisfies the decomposability as T is an induced subgraph of S ,
which is decomposable. ⌅

Theorem 2. If T is an induced tree from S over X1:N , then T (x) =

Q
(vi,vj)2TE

wij

QN
n=1 Ixn ,

where wij is the edge weight of (vi, vj) if vi is a sum node and wij = 1 if vi is a product node.

Proof. First, the scope of T is the same as the scope of S because the root of S is also the root of T .
This shows that for each Xi there is at least one indicator Ixi in the leaves otherwise the scope of
the root node of T will be a strict subset of the scope of the root node of S. Furthermore, for each
variable Xi there is at most one indicator Ixi in the leaves. This is observed by the fact that there
is at most one child collected from a sum node into T and if Ixi and Ix̄i appear simultaneously in
the leaves, then their least common ancestor must be a product node. Note that the least common
ancestor of Ixi and Ix̄i is guaranteed to exist because of the tree structure of T . However, this leads
to a contradiction of the fact that S is decomposable. As a result, there is exactly one indicator Ixi for
each variable Xi in T . Hence the multiplicative constant of the monomial admits the form

Qn
i=1 Ixi ,

which is a product of univariate distributions. More specifically, it is a product of indicator variables
in the case of Boolean input variables.

We have already shown that T is a tree and only product nodes in T can have multiple chil-
dren. It follows that the functional form of fT (x) must be a monomial, and only edge weights
that are in T contribute to the monomial. Combing all the above, we know that fT (x) =Q

(vi,vi)2TE
wij

QN
n=1 Ixn . ⌅

Theorem 3. ⌧S = fS(1|1), where fS(1|1) is the value of the network polynomial of S with input
vector 1 and all edge weights set to be 1.
Theorem 4. S(x) =

P⌧S
t=1 Tt(x), where Tt is the tth unique induced tree of S .

Proof. We prove by induction on the height of S . If the height of S is 2, then depending on the type
of the root node, we have two cases:

1. If the root is a sum node with K children, then there are C1
K = K different subgraphs that

satisfy Def. 2, which is exactly the value of the network by setting all the indicators and
edge weights from the root to be 1.

2. If the root is a product node then there is only 1 subgraph which is the graph itself. Again,
this equals to the value of S by setting all indicators to be 1.

Assume the theorem is true for SPNs with height h. Consider an SPN S with height h+ 1. Again,
depending on the type of the root node, we need to discuss two cases:

10

1. If the root is a sum node with K children, where the kth sub-SPN has fSk(1|1)
unique induced trees, then by Def. 2 the total number of unique induced trees of S isPK

k=1 fSk(1|1) =
PK

k=1 1 · fSk(1|1) = fS(1|1).
2. If the root is a product node with K children, then the total number of unique induced trees

of S can then be computed by
QK

k=1 fSk(1|1) = fS(1|1).
The second part of the theorem follows by using distributive law between multiplication and addition
to combine unique trees that share the same prefix in bottom-up order. ⌅

B MLE as Signomial Programming

Proposition 6. The MLE problem for SPNs is a signomial program.

Proof. Using the definition of Pr(x|w) and Corollary 5, let ⌧ = fS(1|1), the MLE problem can be
rewritten as

maximize
w

fS(x|w)

fS(1|w)

=

P⌧
t=1

QN
n=1 I

(t)
xn

QD
d=1 w

Iwd2Tt

dP⌧
t=1

QD
d=1 w

Iwd2Tt

d

subject to w 2 RD
++

(8)

which we claim is equivalent to:

minimizew,z

� z

subject to
⌧

X

t=1

z
D

Y

d=1

w
Iwd2Tt
d

�
⌧

X

l=1

N

Y

n=1

I(t)
xn

D

Y

d=1

w
Iwd2Tt
d

 0

w 2 RD

++, z > 0

(9)

It is easy to check that both the objective function and constraint function in (9) are signomials. To
see the equivalence of (8) and (9), let p⇤ be the optimal value of (8) achieved at w⇤. Choose z = p⇤

and w = w

⇤ in (9), then �z is also the optimal solution of (9) otherwise we can find feasible (z0,w0
)

in (9) which has �z0 < �z , z0 > z. Combined with the constraint function in (9), we have
p⇤ = z < z0 fS(x|w0)

fS(1|w0) , which contradicts the optimality of p⇤. In the other direction, let z⇤,w⇤ be
the solution that achieves optimal value of (9), then we claim that z⇤ is also the optimal value of (8),
otherwise there exists a feasible w in (8) such that z , fS(x|w)

fS(1|w) > z⇤. Since (w, z) is also feasible in
(9) with �z < �z⇤, this contradicts the optimality of z⇤. ⌅

The transformation from (8) to (9) does not make the problem any easier to solve. Rather, it destroys
the structure of (8), i.e., the objective function of (8) is the ratio of two posynomials. However, the
equivalent transformation does reveal some insights about the intrinsic complexity of the optimization
problem, which indicates that it is hard to solve (8) efficiently with the guarantee of achieving a
globally optimal solution.

C Convergence of CCCP for SPNs

We discussed before that the sequence of function values {f(y(k)
)} converges to a limiting point.

However, this fact alone does not necessarily indicate that {f(y(k)
)} converges to f(y⇤

) where y⇤ is
a stationary point of f(·) nor does it imply that the sequence {y(k)} converges as k ! 1. Zangwill’s
global convergence theory [19] has been successfully applied to study the convergence properties
of many iterative algorithms frequently used in machine learning, including EM [17], generalized
alternating minimization [8] and also CCCP [11]. Here we also apply Zangwill’s theory and combine
the analysis from [11] to show the following theorem:

Theorem 7. Let {w(k)}1k=1 be any sequence generated using Eq. 7 from any positive initial point,
then all the limiting points of {w(k)}1k=1 are stationary points of the DCP in (2). In addition,
limk!1 f(y(k)

) = f(y⇤
), where y

⇤ is some stationary point of (2).

11

Proof. We will use Zangwill’s global convergence theory for iterative algorithms [19] to show the
convergence in our case. Before showing the proof, we need to first introduce the notion of “point-to-
set mapping”, where the output of the mapping is defined to be a set. More formally, a point-to-set
map � from a set X to Y is defined as � : X 7! P(Y), where P(Y) is the power set of Y . Suppose
X and Y are equipped with the norm || · ||X and || · ||Y , respectively. A point-to-set map � is said to
be closed at x⇤ 2 X if xk 2 X , {xk}1k=1 ! x⇤ and yk 2 Y, {yk}1k=1 ! y⇤, yk 2 �(xk) imply that
y⇤ 2 �(x⇤

). A point-to-set map � is said to be closed on S ✓ X if � is closed at every point in S.
The concept of closedness in the point-to-set map setting reduces to continuity if we restrict that the
output of � to be a set of singleton for every possible input, i.e., when � is a point-to-point mapping.

Theorem 8 (Global Convergence Theorem [19]). Let the sequence {xk}1k=1 be generated by xk+1 2
�(xk), where �(·) is a point-to-set map from X to X . Let a solution set � ✓ X be given, and
suppose that:

1. all points xk are contained in a compact set S ✓ X .
2. � is closed over the complement of �.
3. there is a continuous function ↵ on X such that:

(a) if x 62 �, ↵(x0
) > ↵(x) for 8x0 2 �(x).

(b) if x 2 �,↵(x0
) � ↵(x) for 8x0 2 �(x).

Then all the limit points of {xk}1k=1 are in the solution set � and ↵(xk) converges monotonically to
↵(x⇤

) for some x⇤ 2 �.

Let w 2 RD
+ . Let �(w(k�1)

) = exp(argmax

y

ˆf(y,y(k�1)
)) and let ↵(w) = f(logw) = f(y) =

log fS(x| exp(y)) � log fS(1| exp(y)). Here we use w and y interchangeably as w = exp(y) or
each component is a one-to-one mapping. Note that since the argmax

y

ˆf(y,y(k�1)
) given y

(k�1)

is achievable, �(·) is a well defined point-to-set map for w 2 RD
+ .

Specifically, in our case given w

(k�1), at each iteration of Eq. 7 we have

w0
ij =

wijfvj (1|w)P
j wijfvj (1|w)

/ w
(k�1)
ij

fvj (x|w(k�1)
)

fS(x|w(k�1)
)

@fS(x|w(k�1)
)

@fvi(x|w(k�1)
)

i.e., the point-to-set mapping is given by

�ij(w
(k�1)

) =

w
(k�1)
ij fvj (x|w(k�1)

)

@fS(x|w(k�1))
@fvi (x|w(k�1))

P
j0 w

(k�1)
ij0 fvj0 (x|w(k�1)

)

@fS(x|w(k�1))
@fvi (x|w(k�1))

Let S = [0, 1]D, the D dimensional hyper cube. Then the above update formula indicates that
�(w

(k�1)
) 2 S. Furthermore, if we assume w(1) 2 S, which can be obtained by local normalization

before any update, we can guarantee that {wk}1k=1 ✓ S, which is a compact set in RD
+ .

The solution to max

y

ˆf(y,y(k�1)
) is not unique. In fact, there are infinitely many solutions to this

nonlinear equations. However, as we define above, �(w(k�1)
) returns one solution to this convex

program in the D dimensional hyper cube. Hence in our case �(·) reduces to a point-to-point map,
where the definition of closedness of a point-to-set map reduces to the notion of continuity of a
point-to-point map. Define � = {w⇤ | w⇤ is a stationary point of ↵(·)}. Hence we only need to
verify the continuity of �(w) when w 2 S. To show this, we first characterize the functional form of
@fS(x|w)
@fvi (x|w) as it is used inside �(·). We claim that for each node vi,

@fS(x|w)
@fvi (x|w) is again, a posynomial

function of w. A graphical illustration is given in Fig. 3 to explain the process. This can also be
derived from the sum rules and product rules used during top-down differentiation. More specifically,
if vi is a product node, let vj , j = 1, . . . , J be its parents in the network, which are assumed to be sum
nodes, the differentiation of fS with respect to fvi is given by @fS(x|w)

@fvi (x|w) =
PJ

j=1
@fS(x|w)
@fvj (x|w)

@fvj (x|w)

@fvi (x|w) .
We reach

@fS(x|w)

@fvi(x|w)

=

JX

j=1

wij
@fS(x|w)

@fvj (x|w)

(10)

12

+

⇥ ⇥ ⇥ ⇥

+

vi
+ + +

w1

Figure 3: Graphical illustration of @fS(x|w)
@fvi (x|w) . The partial derivative of fS with respect to fvi (in

red) is a posynomial that is a product of edge weights lying on the path from root to vi and network
polynomials from nodes that are children of product nodes on the path (highlighted in blue).

Similarly, if vi is a sum node and its parents vj , j = 1, . . . , J are assumed to be product nodes, we
have

@fS(x|w)

@f
vi(x|w)

=

J

X

j=1

@fS(x|w)

@f
vj (x|w)

f
vj (x|w)

f
vi(x|w)

(11)

Since vj is a product node and vj is a parent of vi, so the last term in Eq. 11 can be equivalently
expressed as

fvj (x|w)

fvi(x|w)

=

Y

h 6=i

fvh(x|w)

where the index is range from all the children of vj except vi. Combining the fact that the partial
differentiation of fS with respect to the root node is 1 and that each fv is a posynomial function, it
follows by induction in top-down order that @fS(x|w)

@fvi (x|w) is also a posynomial function of w.

We have shown that both the numerator and the denominator of �(·) are posynomial functions
of w. Because posynomial functions are continuous functions, in order to show that �(·) is also
continuous on S\�, we need to guarantee that the denominator is not a degenerate posynomial
function, i.e., the denominator of �(w) 6= 0 for all possible input vector x. Recall that � =

{w⇤ | w⇤ is a stationary point of ↵(·)}, hence 8w 2 S\�, w 62 bd S, where bd S is the boundary
of the D dimensional hyper cube S. Hence we have 8w 2 S\�) w 2 int S) w > 0 for each
component. This immediately leads to fv(x|w) > 0, 8v. As a result, �(w) is continuous on S\�
since it is the ratio of two strictly positive posynomial functions.

We now verify the third property in Zangwill’s global convergence theory. At each iteration of CCCP,
we have the following two cases to consider:

1. If w

(k�1) 62 �, i.e., w

(k�1) is not a stationary point of ↵(w), then y

(k�1) 62
argmax

y

ˆf(y,y(k�1)
), so we have ↵(w(k)

) = f(y(k)
) � ˆf(y(k),y(k�1)

) >
ˆf(y(k�1),y(k�1)

) = f(y(k�1)
) = ↵(w(k�1)

).
2. If w

(k�1) 2 �, i.e., w

(k�1) is a stationary point of ↵(w), then y

(k�1) 2
argmax

y

ˆf(y,y(k�1)
), so we have ↵(w(k)

) = f(y(k)
) � ˆf(y(k),y(k�1)

) =

ˆf(y(k�1),y(k�1)
) = f(y(k�1)

) = ↵(w(k�1)
).

By Zangwill’s global convergence theory, we now conclude that all the limit points of {wk}1k=1 are
in � and ↵(wk) converges monotonically to ↵(w⇤

) for some stationary point w⇤ 2 �. ⌅

Remark 1. Technically we need to choose w0 2 int S to ensure the continuity of �(·). This initial
condition combined with the fact that inside each iteration of CCCP the algorithm only applies

13

+

⇥ ⇥ ⇥

+ +

X1 ¯X1 X2 ¯X2

w1 w2
w3

2
3

1
3

2
3

1
3

Figure 4: A counterexample of SPN over two binary random variables where the weights w1, w2, w3

are symmetric and indistinguishable.

positive multiplicative update and renormalization, ensure that after any finite k steps, wk 2 intS.
Theoretically, only in the limit it is possible that some components of w1 may become 0. However
in practice, due to the numerical precision of float numbers on computers, it is possible that after
some finite update steps some of the components in wk become 0. So in practical implementation
we recommend to use a small positive number ✏ to smooth out such 0 components in wk during the
iterations of CCCP. Such smoothing may hurt the monotonic property of CCCP, but this can only
happens when wk is close to w

⇤ and we can use early stopping to obtain a solution in the interior of
S.
Remark 2. Thm. 7 only implies that any limiting point of the sequence {wk}1k=1({yk}1k=1) must be
a stationary point of the log-likelihood function and {f(y)k}1k=1 must converge to some f(y⇤

) where
y

⇤ is a stationary point. Thm. 7 does not imply that the sequence {wk}1k=1({yk}1k=1) is guaranteed
to converge. [11] studies the convergence property of general CCCP procedure. Under more strong
conditions, i.e., the strict concavity of the surrogate function or that �() to be a contraction mapping,
it is possible to show that the sequence {wk}1k=1({yk}1k=1) also converges. However, none of such
conditions hold in our case. In fact, in general there are infinitely many fixed points of �(·), i.e., the
equation �(w) = w has infinitely many solutions in S. Also, for a fixed value t, if ↵(w) = t has at
least one solution, then there are infinitely many solutions. Such properties of SPNs make it generally
very hard to guarantee the convergence of the sequence {wk}1k=1({yk}1k=1). We give a very simple
example below to illustrate the hardness in SPNs in Fig. 4. Consider applying the CCCP procedure to
learn the parameters on the SPN given in Fig. 4 with three instances {(0, 1), (1, 0), (1, 1)}. Then if
we choose the initial parameter w0 such that the weights over the indicator variables are set as shown
in Fig. 4, then any assignment of (w1, w2, w3) in the probability simplex will be equally optimal
in terms of likelihood on inputs. In this example, there are uncountably infinite equal solutions,
which invalidates the finite solution set requirement given in [11] in order to show the convergence of
{wk}1k=1. However, we emphasize that the convergence of the sequence {wk}1k=1 is not as important
as the convergence of {↵(w)k}1k=1 to desired locations on the log-likelihood surface as in practice
any w

⇤ with equally good log-likelihood may suffice for the inference/prediction task.

It is worth to point out that the above theorem does not imply the convergence of the sequence
{w(k)}1k=1. Thm. 7 only indicates that all the limiting points of {w(k)}1k=1, i.e., the limits of
subsequences of {w(k)}1k=1, are stationary points of the DCP in (2). We also present a negative
example in Fig. 4 that invalidates the application of Zangwill’s global convergence theory on the
analysis in this case.

The convergence rate of general CCCP is still an open problem [11]. [16] studied the convergence
rate of unconstrained bound optimization algorithms with differentiable objective functions, of which
our problem is a special case. The conclusion is that depending on the curvature of f1 and f2 (which
are functions of the training data), CCCP will exhibit either a quasi-Newton behavior with superlinear
convergence or first-order convergence. We show in experiments that CCCP normally exhibits a fast,

14

superlinear convergence rate compared with PGD, EG and SMA. Both CCCP and EM are special
cases of a more general framework known as Majorization-Maximization. We show that in the case
of SPNs these two algorithms coincide with each other, i.e., they lead to the same update formulas
despite the fact that they start from totally different perspectives.

D Experiment Details

D.1 Methods

We will briefly review the current approach for training SPNs using projected gradient descent (PGD).
Another related approach is to use exponentiated gradient (EG) [10] to optimize (8). PGD optimizes
the log-likelihood by projecting the intermediate solution back to the positive orthant after each
gradient update. Since the constraint in (8) is an open set, we need to manually create a closed
set on which the projection operation can be well defined. One feasible choice is to project on to
RD

✏ , {w 2 RD
++ | wd � ✏, 8d} where ✏ > 0 is assumed to be very small. To avoid the projection,

one direct solution is to use the exponentiated gradient (EG) method[10], which was first applied
in an online setting and latter successfully extended to batch settings when training with convex
models. EG admits a multiplicative update at each iteration and hence avoids the need for projection
in PGD. However, EG is mostly applied in convex setting and it is not clear whether the convergence
guarantee still holds or not in nonconvex setting.

D.2 Experimental Setup

The sizes of different SPNs produced by LearnSPN and ID-SPN are shown in Table 3.

Table 3: Sizes of SPNs produced by LearnSPN and ID-SPN.
Data set LearnSPN ID-SPN
NLTCS 13,733 24,690
MSNBC 54,839 579,364
KDD 2k 48,279 1,286,657
Plants 132,959 2,063,708
Audio 739,525 2,643,948
Jester 314,013 4,225,471
Netflix 161,655 7,958,088
Accidents 204,501 2,273,186
Retail 56,931 60,961
Pumsb-star 140,339 1,751,092
DNA 108,021 3,228,616
Kosarak 203,321 1,272,981
MSWeb 68,853 1,886,777
Book 190,625 1,445,501
EachMovie 522,753 2,440,864
WebKB 1,439,751 2,605,141
Reuters-52 2,210,325 4,563,861
20 Newsgrp 14,561,965 3,485,029
BBC 1,879,921 2,426,602
Ad 4,133,421 2,087,253

We list here the detailed statistics of the 20 data sets used in the experiments in Table 4. Table 5
shows the detailed running time of PGD, EG, SMA and CCCP on 20 data sets, measured in seconds.

15

Table 4: Statistics of data sets and models. N is the number of variables modeled by the network, |S|
is the size of the network and D is the number of parameters to be estimated in the network. N⇥V/D
means the ratio of training instances times the number of variables to the number parameters.

Data set N |S| D Train Valid Test N ⇥ V/D
NLTCS 16 13,733 1,716 16,181 2,157 3,236 150.871
MSNBC 17 54,839 24,452 291,326 38,843 58,265 202.541
KDD 2k 64 48,279 14,292 180,092 19,907 34,955 806.457
Plants 69 132,959 58,853 17,412 2,321 3,482 20.414
Audio 100 739,525 196,103 15,000 2,000 3,000 7.649
Jester 100 314,013 180,750 9,000 1,000 4,116 4.979
Netflix 100 161,655 51,601 15,000 2,000 3,000 29.069
Accidents 111 204,501 74,804 12,758 1,700 2,551 18.931
Retail 135 56,931 22,113 22,041 2,938 4,408 134.560
Pumsb-star 163 140,339 63,173 12,262 1,635 2,452 31.638
DNA 180 108,021 52,121 1,600 400 1,186 5.526
Kosarak 190 203,321 53,204 33,375 4,450 6,675 119.187
MSWeb 294 68,853 20,346 29,441 3,270 5,000 425.423
Book 500 190,625 41,122 8,700 1,159 1,739 105.783
EachMovie 500 522,753 188,387 4,524 1,002 591 12.007
WebKB 839 1,439,751 879,893 2,803 558 838 2.673
Reuters-52 889 2,210,325 1,453,390 6,532 1,028 1,540 3.995
20 Newsgrp 910 14,561,965 8,295,407 11,293 3,764 3,764 1.239
BBC 1058 1,879,921 1,222,536 1,670 225 330 1.445
Ad 1556 4,133,421 1,380,676 2,461 327 491 2.774

Table 5: Running time of 4 algorithms on 20 data sets, measured in seconds.

Data set PGD EG SMA CCCP
NLTCS 438.35 718.98 458.99 206.10
MSNBC 2720.73 2917.72 8078.41 2008.07
KDD 2k 46388.60 22154.10 27101.50 29541.20
Plants 12595.60 10752.10 7604.09 13049.80
Audio 19647.90 3430.69 12801.70 14307.30
Jester 6099.44 6272.80 4082.65 1931.41
Netflix 29573.10 27931.50 15080.50 8400.20
Accidents 14266.50 3431.82 5776.00 20345.90
Retail 28669.50 7729.89 9866.94 5200.20
Pumsb-star 3115.58 13872.80 4864.72 2377.54
DNA 599.93 199.63 727.56 1380.36
Kosarak 122204.00 112273.00 49120.50 42809.30
MSWeb 136524.00 13478.10 65221.20 45132.30
Book 190398.00 6487.84 69730.50 23076.40
EachMovie 30071.60 32793.60 17751.10 60184.00
WebKB 123088.00 50290.90 44004.50 168142.00
Reuters-52 13092.10 5438.35 20603.70 1194.31
20 Newsgrp 151243.00 96025.80 173921.00 11031.80
BBC 20920.60 18065.00 36952.20 3440.37
Ad 12246.40 2183.08 12346.70 731.48

16

	Introduction
	Background
	Sum-Product Networks
	Signomial Programming (SP)

	Unified Approach for Learning
	Sum-Product Networks as a Mixture of Trees
	Maximum Likelihood Estimation as SP
	Difference of Convex Functions
	Sequential Monomial Approximation
	Concave-convex Procedure

	Experiments
	Experimental Setting
	Parameter Learning
	Fine Tuning

	Conclusion
	Proof of SPNs as Mixture of Trees
	MLE as Signomial Programming
	Convergence of CCCP for SPNs
	Experiment Details
	Methods
	Experimental Setup

