Introduction

- We present a unified approach for learning the parameters of
Sum-Product networks (SPNs).

* We construct a more etficient factorization of complete and
decomposable SPN into a mixture of trees, with each tree being a
product of univariate distributions.

- We show that the MLE problem for SPNs can be formulated as a
signomial program.

* We construct two parameter learning algorithms for SPNs by using
sequential monomial approximations (SMA) and the

concave-convex procedure (CCCP). Both SMA and CCCP admut
multiplicative weight updates.

* We prove the convergence of CCCP on SPNs.

Background
Sum-Product Networks (SPNs):

- Rooted directed acyclic graph of univariate distributions, sum nodes
and product nodes.

* We focus on discrete SPNs, but the proposed algorithms work for
continuous ones as well.

Recursive computation of the network:
p(Xi = x;)

Vi(x | W) = {Ijecn()

\ZjECh(k) wijj(X \ w) k 1S a sum node

k 1s a leaf node over X

Vi(x | w) k is a product node

Scope: The set of variables that have univariate distributions among
the node’s descendants.

Complete: An SPN 1s complete iff each sum node has children with
the same scope.

Decomposable: An SPN 1s decomposable iff for every product node
v, scope(v;) N scope(v;) = & where v;, v; € Ch(v),i # j.
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A Unified Framework for Learning

(SPNs as a Mixture of Trees) Theorem 1:

Every complete and decomposable SPN & can be factorized into a sum
of (2(2") induced trees (sub-graphs), where each tree corresponds to a
product of univariate distributions. 5 is the height of S.

Maximum Likelihood Estimation as Signomial Program:

The MLE optimization 1is:
o fs(xlw) s IO w deeﬁ
maximize., = Hw -
fs(1|w) S M wg ™™

subjectto w & Rf n

= Q(2"). D is the number of parameters in S. N is the number of
random variables modeled by S. 7; is the ¢-th induced tree.
Proposition 2:
The MLE problem for SPNs 1s a signomial program.
Logarithmic transformation leads to a difference of convex functions:

T(x) D T D
maximize log (Z exp (Z Yall,, deﬁ)) — log (Z exp (Z yall, dEE))
t=1 d=1 t=1 d=1
Sequential Monomial Approximation (SMA): Optimal linear ap-
proximation in log-space, corresponds to the optimal monomial func-
tion approximation to the original signomial.
Concave-Convex Procedure (CCCP): Sequential convex relaxation
by linearizing the first term, with efficient O(|S]) closed form solver
for each convex sub-problem.

(Convergence of CCCP) Theorem 2:

Let {W(k) -, be any sequence generated by CCCP from any feasible
initial point. Then all the limiting points of {w¥)12 are stationary
points of the difference of convex functions program (DCP). In addi-
tion, limy_,~ f(y"*)) = f(y*), where y* is some stationary point of the
DCP, 1.e., the sequence of objective function values converges.

Algo Update Type Update Formula

PGD Additve  w[V « Pa {0 + 4V, f(w))
EG  Multiplicative w! ™ « w'™ exp{yV,, f(w®)}
SMA Multiplicative é D wc(i )exo{vwdk wdf(w(k))}
CCCP Multiplicative w: ™" oc w!? - v, fs(w*)) - f, (wh))

Experiments
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Figure 1: Negative log-likelihood values versus number of iterations for PGD,
EG, SMA and CCCP on 20 benchmark datasets.
- CCCP consistently outperforms all the other three algorithms.

* We suggest CCCP for maximum likelithood estimation, and CVB for
Bayesian learning of SPNs (See our ICML 2016 paper).



