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A Extension to Review Scores
We define our setup when we have review scores instead of rankings here. In this setting, every reviewer gives his ranking as a
vector ⇡piq “ psijqnj“1, where psijq is the score of paper pj given by reviewer ri if pj P Pi, and sij “K (placeholder) otherwise.
We use the definition of strategyproof in this setting, and define group unanimity as below:
Definition 5 (Group Unanimity (GU) for review scores). The pair pG, fq is said to be group unanimous (GU) if the following
condition holds for every possible profile ⇡: If there is a non-empty set of papers P 1 Ä P such that for every triplet of reviewer
and papers pri, px, pyq such that px, py P Pi, px P P

1
, py P PzP 1 we have six ° siy, then fp⇡q must have px ° py for every

pair of papers px P P
1 and py P PzP 1 such that at least one reviewer has reviewed both px and py .

Theorem 1 still holds with exactly the same proof (cf. Appendex B.2).

B Proofs
In the appendix, we provide the missing proofs of all the results from the main paper.

B.1 Proof of Proposition 1
Proof. Suppose pG, fq is PU, and P

1 Ä P satisfies that every reviewer ranks the papers she reviewed from P
1 higher than those

she reviewed from PzP 1. Now for every px P P
1 and py P PzP 1 and reviewer ri such that ri reviews both px and py, ri must

rank px ° py since otherwise the assumption of P 1 is violated. Since f is PU, we know that fp⇡q must respect px ° py as well.
This argument holds for every px P P

1 and py P PzP 1 that have been reviewed by at least one reviewer, and hence pG, fq is also
GU. ⌅

B.2 Proof of Theorem 1
We assume that the condition on the partitioning of the conflict graph, as stated in the statement of this theorem, is met. We begin
with a lemma which shows that for any aggregation algorithm B, Contract-and-Sort is group unanimous.
Lemma 1. For any assignment and aggregation algorithms A and B, the aggregation procedure Contract-and-Sort is group
unanimous.

Proof of Lemma 1. Let fpr⇡q :“ Contract-and-Sortpr⇡,Bq, where r⇡ is a preference profile. Define ⇡ “ fpr⇡q. Let k denote
the number of SCCs in Gr⇡ . Construct a directed graph rGr⇡ such that each of its vertices represents a SCC in Gr⇡ , and there is an
edge from one vertex to another in rGr⇡ iff there exists an edge going from one SCC to the other in the original graph Gr⇡ . Let
ṽ1, . . . , ṽk be a topological ordering of the vertices in rGr⇡ . Since ṽ1, . . . , ṽk is a topological ordering, then edges can only go
from ṽj1 to ṽj2 where j1 † j2. Now consider any cut pPX ,PY q in Gr⇡ that satisfies the requirement of group unanimity, i.e., all
edges in the cut direct from PX to PY . Then there is no pair of papers px P PX and py P PY such that px and py are in the
same connected component, otherwise there will be both paths from px to py and py to px, contradicting that pPX ,PY q forms a
cut where all the edges go in one direction. This shows that PX and PY also form a partition of all the vertices ṽ1, . . . , ṽk. Now
consider any edge ppx, pyq from PX to PY . Suppose px is in component ṽjx and py in component ṽjy . We have jx ‰ jy , since
PX and PY forms a partition of all SCCs; also it cannot happen that jx ° jy , otherwise ṽ1, . . . , ṽk is not a topological ordering
returned by f . So it must be jx † jy , and the edge ppx, pyq is respected in the final ordering. ⌅
Proof of Theorem 1. Under the assumptions on µ, � and sizes of RC ,R sC ,PC ,P sC , it is easy to verify that there is a paper
allocation satisfies |Pi| § µ,@ i P rms and each paper gets at least � reviews. The strategyproofness of Divide-and-Rank

follows from the standard ideas in the past literature on partitioning-based methods [Alon et al., 2011]: Algorithm 1 guarantees
that reviewers in RC do not review papers in P sC , and reviewers in R sC do not review papers in PC . Hence the fact that
Divide-and-Rank is strategyproof trivially follows from the assignment procedure where each reviewer does not review the
papers that are in conflict with her, as specified by the conflict graph C. Given that all the other reviews are fixed, the ranking of
the papers in conflict with her will only be determined by the other group of reviewers and so fixed no matter how she changes
her own ranking. On the other hand, from Lemma 1, since Contract-and-Sort is group unanimous, we know that ⇡C and ⇡ sC
respect group unanimity w.r.t. ⇡C and ⇡C̄ , respectively. Since ⇡ “ p⇡C ,⇡C̄q, it follows that ⇡C and ⇡ sC also respect group
unanimity w.r.t. ⇡. Finally, note that there is no reviewer who has reviewed both papers from PC and P sC , the interlacing step
preserves the group unanimity, which completes our proof. ⌅

B.3 Proof of Theorem 2
Proof. The proof of Theorem 2 is a direct formulation of our intuition in Section Impossibility of Pairwise Unanimity. Without
loss of generality let pp1, . . . , plq be the cycle not reviewed by a single reviewer, for l • 3. Hence there exists a partial profile ⇡
such that for all the reviewers who have reviewed both pj and pj`1, pj ° pj`1,@j P rls (define pl`1 “ p1). On the other hand,
since for each reviewer, at least one pair ppj , pj`1q is not reviewed by her, the constructed partial profile is valid. Now assume f
is PU, then we must have p1 ° ¨ ¨ ¨ ° pl and pl ° p1, which contradicts the transitivity of the ranking. ⌅



B.4 Proof of Corollary 1
Proof. We prove each of the conditions in order.

Proof of part (i): If there is a cycle of size µ ` 1, then no reviewer can review all the papers in it since it exceeds the size of
review sets. So there is no such cycle.

Proof of part (ii): The statement trivially holds for µ “ 2. For µ • 3, Suppose there are two reviewers ri1 and ri2 such that
2 § |Pi1 X Pi2 | § µ ´ 1. Since Pi1 ‰ Pi2 , there exist papers pj1 and pj2 such that pj1 P Pi1zPi2 and pj2 P Pi2zPi1 . Also
|Pi1 X Pi2 | • 2, and let pj3 , pj4 P Pi1 X Pi2 . By definition it is easy to verify that ppj1 , pj3 , pj2 , pj4q forms a cycle that satisfies
the condition in Theorem 2, and hence pG, fq is not pairwise unanimous.

Proof of part (iii): Define a “paper-relation graph” Gp as follows: Given a paper-review assignment tPiumi“1, the paper-relation
graph Gp is an undirected graph, whose nodes are the distinct sets in tPiumi“1; we connect two review sets iff they have one paper
in common. Note that by (ii), each pair of distinct sets has at most one paper in common.

We first show that pG, fq is pairwise unanimous, then Gp must necessarily be a forest of cliques; in other words, all
cycles in Gp are essentially cliques. To see this, not losing generality consider a cycle in Gp as pP1, ...,Plq. Also, suppose
P1 X P2 “ tp1u,P2 X P3 “ tp2u, ...,Pl X P1 “ tplu. We consider two cases:

• p1 “ p2 “ ¨ ¨ ¨ “ pl. In this case pP1, ...,Plq is a clique.
• At least two papers are different; suppose p1 ‰ p2. We have p2 R P1, since otherwise p1, p2 P P1 X P2, which violates our

assumption that |Pi X Pj | § 1 for every i ‰ j. So there is a cycle that contains p1, p2, and reviewers of P1 have not read
p2. This violates the condition in Theorem 2. So this cannot happen, and all cycles are cliques.

We now use this result to complete our proof. Consider the union of all sets of papers that form vertices of Gp. We know that
this union contains exactly n papers since each paper is reviewed at least once. Now let kp denote the number of distinct review
sets (that is, number of vertices of Gp), and let Pii , ...,Pikp

denote the vertices of Gp. Now from our previous analysis we know
that for a clique C in Gp, every review set has one common paper, and all other papers in the review set are different from other
sets. So each clique contains nCpµ ´ 1q ` 1 papers, where nC is the size of the clique. Now let mpCq be the number of edges
between cliques, and n

pCq be the number of cliques. Notice that Gp is a forest of cliques, we have

n “
ÿ

CPGp

|C| ´
ÿ

C,C1PGp

|C X C
1|

“
ÿ

CPGp

pnCpµ ´ 1q ` 1q ` n
pCq ´ m

pCq

“ kpµ ´
ÿ

CPGp

nC ` n
pCq ´ m

pCq • kppµ ´ 1q ` 1.

The first equality is from the inclusion-exclusion principle, and that the union of three or more cliques is empty, since otherwise
Gp cannot be a forest of cliques. Putting kp on the left side gives the result kp § n´1

µ´1 . ⌅

B.5 Proof of Proposition 2
Proof. Fix some ranking of papers within each individual set P1, P2, P3 and P4 (e.g., according to the natural order of their
indices). In the remainder of the proof, any ranking of all papers always considers these fixed rankings within these individual
sets. With this in place, in what follows, we refer to any ranking in terms of the rankings of the four sets of papers.

Suppose there is one such f that satisfies group unanimity and weak strategyproofness for G, and consider the following 4
profiles:
(1) r1 : P1 ° P2, r2 : P2 ° P3, r3 : P3 ° P4

(2) r1 : P2 ° P1, r2 : P3 ° P2, r3 : P4 ° P3

(3) r1 : P2 ° P1, r2 : P2 ° P3, r3 : P3 ° P4

(4) r1 : P2 ° P1, r2 : P3 ° P2, r3 : P3 ° P4

By the property of GU, profile (1) leads to output P1 ° P2 ° P3 ° P4, whereas (2) leads to output P4 ° P3 ° P2 ° P1. Now
compare (1) and (3): The output of (3) must have P2 at the top and satisfy P3 ° P4, by the property of GU. So the output
of profile (3) must be one of i) P2 ° P1 ° P3 ° P4, ii) P2 ° P3 ° P1 ° P4, or iii) P2 ° P3 ° P4 ° P1. Now note that
only reviewer r1 changes ranking across profiles (1) and (3), and hence by WSP the position of at least one paper in the output
of profile (3) must be the same as in that of profile (1). This makes iii) infeasible, so the output of (3) must be either i) or ii).
Similarly, the output of (4) is either P3 ° P4 ° P2 ° P1 or P3 ° P2 ° P4 ° P1. Now comparing (3) and (4): only r2 changes
ranking, but none of the four papers can be at the same position no matter how we choose the outputs of (3) and (4). This yields
a contradiction. ⌅
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