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Abstract
We consider peer review under a conference setting
where there are conflicts between the reviewers and
the submissions. Under such conflicts, reviewers
can manipulate their reviews in a strategic manner
to influence the final rankings of their own papers.
Present-day peer-review systems are not designed
to guard against such strategic behavior, beyond
minimal (and insufficient) checks such as not as-
signing a paper to a conflicted reviewer. In this
work, we address this problem through the lens of
social choice, and present a theoretical framework
for strategyproof and efficient peer review. Given
the conflict graph which satisfies a simple property,
we first present and analyze a flexible framework
for reviewer-assignment and aggregation for the re-
views that guarantees not only strategyproofness but
also a natural efficiency property (unanimity). Our
framework is based on the so-called partitioning
method, and can be treated as a generalization of
this type of method to conference peer review set-
tings. We then empirically show that the requisite
property on the (authorship) conflict graph is in-
deed satisfied in the ICLR-17 submissions data, and
further demonstrate a simple trick to make the par-
titioning method more practically appealing under
conference peer-review settings. Finally, we comple-
ment our positive results with negative theoretical
results where we prove that under slightly stronger
requirements, it is impossible for any algorithm to
be both strategyproof and efficient.

1 Introduction
Peer review serves as an effective solution for quality eval-
uation in reviewing processes, especially in academic paper
review [Dörfler et al., 2017, Shah et al., 2017] and massive
open online courses (MOOCs) [Dı́ez Peláez et al., 2013, Piech
et al., 2013, Shah et al., 2013]. However, despite its scala-
bility, competitive peer review faces the serious challenge of
being vulnerable to strategic manipulations [Anderson et al.,
2007, Thurner and Hanel, 2011, Alon et al., 2011, Kurokawa
et al., 2015, Kahng et al., 2018]. By manipulating the ratings
or rankings provided reviewers may be able to increase the
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chance that their own submissions get accepted. As noted by
Thurner et al. [2011], even a small number of selfish, strate-
gic reviewers can drastically reduce the quality of scientific
standard. Thus the importance of peer review in academia
and its considerable influence over the careers of researchers
significantly underscores the need to design peer review sys-
tems that are insulated from strategic manipulations. Present-
day peer-review systems are, however, ill-equipped to handle
strategic behavior, and do not have any rigorous framework in
place except some basic checks like not assigning a paper to
a conflicted reviewer. It is easy to show that these checks are
insufficient, that is, reviewers can manipulate the final ranking
of their conflicted papers by strategically manipulating their
reports in current peer-review systems.

In this work, we present a framework for conference peer
review that addresses the problem of strategic behavior. Our
problem setup comprises a set of submitted papers and a set
of reviewers. We are given a graph which we term as “conflict
graph”. The conflict graph is a bipartite graph with the review-
ers and papers as the two partitions of vertices, and an edge
if there exists a conflict between the reviewer and the paper.
Conflicts may arise due to authorship or other reasons such as
institutional conflicts. Given this, there are two design steps in
the peer review procedure: (i) assigning each paper to a subset
of reviewers, and (ii) aggregating the review results provided
by the reviewers to give a final evaluation of each paper.

We focus on ordinal preferences where each reviewer is
asked to give a total ranking of the assigned papers, as ordinal
data avoids biases and miscalibrations and provides a more
direct comparison between papers [Barnett, 2003, Stewart et
al., 2005, Douceur, 2009, Tsukida and Gupta, 2011, Shah et
al., 2013, Shah et al., 2016]. Some modern large conferences
(e.g., NeurIPS [Shah et al., 2017]) have also collected ordinal
preferences for experimental purposes. Also, our methods can
be extended easily to a score-based review system (cf. Section
4.1). Under the setting, we require our mechanism to output
a total ranking over all papers, since this automated output in
practice would be a guideline for program chairs to make their
decisions (e.g., orals, posters, best papers, etc.).

We consider two important goals for designing a good con-
ference review procedure – strategyproofness and efficiency.
In our context, strategyproofness means that no reviewer can
change the outcome of any papers which she/he has a conflict
with, and efficiency means that the final output of the proce-
dure reflects the opinion of most reviewers. Here, we consider



efficiency in terms of the notion of unanimity in social choice
theory: an agreement among all reviewers must be reflected in
the final aggregation.

In addition to the conceptual contributions, we make sev-
eral technical contributions towards this important problem.
We first design a peer review framework which theoretically
guarantees strategyproofness along with a notion of efficiency
that we term as “group unanimity”. With only a mild and
realistic assumption on the conflict graph, we establish our
positive results for the peer review design task. Importantly,
our framework and the specific algorithms are quite flexible
in that it guarantees strategyproofness and unanimity, while
also leaving open a significant room for program chairs to
implement their choice of decision-making strategies.

On the practical front, we validate that the aforementioned
assumption indeed holds in practice via an empirical analysis
of the submissions made to the International Conference on
Learning Representations 2017 (ICLR-17). Furthermore, we
demonstrate a simple trick to make the partitioning method
more practically appealing for conference peer review and
present it on the ICLR-17 data.

We also complement our positive results with negative re-
sults showing that one cannot expect to meet requirements
that are stronger than that provided by our framework. First,
we show that under mild assumptions on the conflict graph,
there is no algorithm that satisfies “pairwise unanimity”, which
is a stronger notion of efficiency than group unanimity, and
is also known as Pareto efficiency in the literature of social
choice [Brandt et al., 2016]. Second, we provide a conjecture
and insightful results to show that if we require the assign-
ment to satisfy a simple “connectivity” condition, our negative
result continues to hold even when the notion of strategyproof-
ness is made extremely weak. These negative results highlight
the intrinsic hardness in designing strategyproof conference
review systems.

2 Related Work
As early as in the 1970s, Gibbard and Satterthwaite had al-
ready been aware of the importance of a healthy voting rule
that guarantees strategyproofness under the setting of social
choice [Gibbard, 1973, Satterthwaite, 1975]. Recently, the fact
that prominent peer review mechanisms are manipulable, has
further called for strategyproof peer review mechanisms [Mer-
rifield and Saari, 2009, Hazelrigg, 2013]. Our work is most
closely related to a series of works on strategyproof peer se-
lection [Alon et al., 2011, Holzman and Moulin, 2013, Fis-
cher and Klimm, 2015, Kurokawa et al., 2015, Aziz et al.,
2016, Kahng et al., 2018], where agents cannot benefit from
misreporting their preferences over other agents. In all these
works, each agent is essentially required to evaluate all the
other agents except herself. This is impractical for conference
peer review, where each reviewer only has to review a small
subset of submissions. In light of such constraints, Kurokawa
et al. [2015] propose a strategyproof (impartial) mechanism
and provide associated approximation guarantees in which
each agent is only required to review a few other agents, but
their algorithm might return an empty set. Based on their
work, Aziz et al. [2016] then propose an improved mechanism
for peer selection which is strategyproof and satisfies a natural
monotonicity property. However, even if the target output

size is k, it may return a subset of size strictly larger than k.
Past works focus on applications of peer-grading and grant
proposal review, and hence consider only the case where every
reviewer is conflicted with exactly one paper. In contrast, our
setting of conference peer review is more challenging: We
allow each reviewer to have conflicts with multiple papers and
each paper to have conflicts with multiple reviewers. Formally,
the conflict graph C under conference peer review is a more
general bipartite graph, where conflicts between reviewers
and papers can arise not only because of authorships, but also
advisor-advisee relationships, institutional conflicts, etc.

3 Problem Setting
We define R :“ tr1, . . . , rmu to be the set of m reviewers
and P :“ tp1, . . . , pnu to be the set of n submitted papers.
To characterize conflicts of interest, we use a bipartite graph
C with vertices pR,Pq, where an edge is connected between
a reviewer r and a paper p if there exists some conflict of
interests between the r and p. Given the set of submitted
papers and reviewers, the conflict graph is fixed and cannot be
controlled. Note that the conflict graph C defined above can
be viewed as a realistic generalization of the authorship graph
in the previously-studied settings of peer grading and grant
proposal review, in which each reviewer (paper) is connected
to at most one paper (reviewer).

The review process is modeled by a second bipartite graph
G, termed as review graph, that also has the reviewers and
submissions pR,Pq as its vertices. This review graph has an
edge between a reviewer and a paper if that reviewer reviews
that submission. For each reviewer ri pi P rmsq, we let Pi Ñ
P denote the set of papers assigned to this reviewer for review,
or in other words, the neighborhood of node ri in the bipartite
graph G. To ensure balanced workloads across reviewers, we
require that every reviewer is assigned at most µ papers for
some integer 1 § µ § n. In other words, every node in
R has at most µ neighbors (in P) in graph G. Additionally,
each paper must be reviewed by at least � reviewers for some
integer 1 § � § m. Thus every node in the set P must have
at least � neighbors (in R) in the graph G. For any (directed
or undirected) graph H, we let the notation EH denote the set
of edges in graph H.

At the end of the reviewing period, each reviewer provides
a total ranking of the papers that she/he reviewed. For any
set of papers P

1 Ñ P , we let ⇧pP 1q denote the set of all
permutations of papers in P

1. Furthermore, for any paper
pj P P

1 and any permutation ⇡pP 1q P ⇧pP 1q, we let ⇡jpP 1q
denote the position of paper pj in the permutation ⇡pP 1q. At
the end of the reviewing period, each reviewer ri submits a
total ranking ⇡

piqpPiq P ⇧pPiq of the papers in Pi. We define
a (partial) ranking profile ⇡ :“ p⇡p1qpP1q, . . . ,⇡pmqpPmqq as
the collection of rankings from all the reviewers. When the
assignment P1, . . . ,Pm of papers to reviewers is fixed, we use
the shorthand p⇡p1q

, . . . ,⇡
pmqq for profile ⇡. For any subset

of papers P 1 Ñ P , we let ⇡P 1 denote the restriction of ⇡ to
only the induced rankings on P

1. Finally, when the ranking
under consideration is clear from context, we use the notation
p ° p

1 to say that paper p is ranked higher than paper p1.
Under this problem setup, the goal is to jointly design:

(a) a paper-reviewer assignment scheme, that is, edges of



the graph G, and (b) an associated review aggregation rule
f :

±m
i“1 ⇧pPiq Ñ ⇧pPq which maps from the ranking

profile to an aggregate total ranking of all papers. For any
aggregation function f , we let fjp⇡q be the position of paper
pj when the input to f is the profile ⇡.

Although we assume ordinal feedback from the reviewers,
our results continue to hold if we have review scores as our
input instead of rankings; our framework is flexible enough to
take the scores into account (cf. Section 4.1). In what follows
we define strategyproofness and efficiency that any conference
review mechanism f should satisfy under our setting. Due to
space limit, we omit all the proofs and refer interested readers
to an online version [Xu et al., 2018] for all the further details.

3.1 Strategyproofness
In the context of conference review, strategyproofness is de-
fined with respect to a given conflict graph C. It means that a
reviewer cannot change the position of her conflicting papers,
by manipulating the ranking she provides.
Definition 1 (Strategyproofness, SP). A review process pG, fq
is called strategyproof with respect to a conflict graph C

if for every reviewer ri P R and every paper pj P P

with pri, pjq P EC , under assignment G, for every pair of
profiles that differ only in the ranking given by reviewer
ri, the position of pj is unchanged. Formally, for every
⇡ “ p⇡p1q

, . . . ,⇡
pi´1q

,⇡
piq
,⇡

pi`1q
, . . . ,⇡

pmqqq and ⇡1 “
p⇡p1q

, . . . ,⇡
pi´1q

,⇡
piq1

,⇡
pi`1q

, . . . ,⇡
pmqq, the results remain

unchanged as fjp⇡q “ fjp⇡1q.
A strategyproof peer review procedure alone is inadequate

with respect to any practical requirements – simply giving out
a fixed, arbitrary evaluation makes the peer review procedure
strategyproof. We therefore consider efficiency of the pro-
cedure in the next section, to ensure that the authors receive
meaningful and helpful feedback for their work.

3.2 Efficiency (Unanimity)
We consider efficiency of a peer review process in the notion
of “unanimity”, which is one of the most prevalent and classic
properties to measure the efficiency of a voting system in the
literature of social choice [Fishburn, 2015]. At a colloquial
level, unanimity states that when there is a common agreement
among all reviewers, the aggregation of the opinions must also
respect this agreement. We discuss two kinds of unanimity,
termed as group unanimity (GU) and pairwise unanimity (PU).
Both kinds of unanimity impose requirements on the aggrega-
tion function for given paper-reviewer assignment. The group
unanimity is defined as follows:
Definition 2 (Group Unanimity, GU). The pair pG, fq is said
to be group unanimous (GU) if the following condition holds
for every possible profile ⇡: For every set of papers P 1 Ä P

such that every reviewer ranks the papers she reviewed from
P

1 higher than those she reviewed from PzP 1, the output fp⇡q
must satisfy px ° py for every pair of papers px P P

1 and
py P PzP 1 such that at least one reviewer has reviewed both
px and py .

Intuitively, group unanimity says that if papers can be parti-
tioned into two sets such that every reviewer who has reviewed
papers from both sets agrees that the papers she has reviewed

from the first set are better than what she reviewed from the
second set, then the final output ranking should respect this
agreement. Our second notion of unanimity, termed pairwise
unanimity, is a local refinement of group unanimity. This
notion is identical to the classical notion of unanimity stated
in Arrow’s impossibility theorem [Arrow, 1950]. Notice that
the classical unanimity considers every reviewer to review all
papers (that is, Pi “ P,@i P rms), whereas our notion is
generalized to settings where reviewers may review only a
subset of papers.
Definition 3 (Pairwise Unanimity, PU). We define pG, fq to be
pairwise unanimous (PU) if the following condition holds for
every possible profile ⇡ and every pair of papers pj1 , pj2 P P :
If at least one reviewer has reviewed both pj1 and pj2 and
all the reviewers that have reviewed pj1 and pj2 agree on
pj1 ° pj2 , then fj1p⇡q ° fj2p⇡q.

An important property is that pairwise unanimity is stronger
than group unanimity.
Proposition 1. If pG, fq is pairwise unanimous, then pG, fq
is also group unanimous.

4 Positive Results
In this section we consider the design of paper-reviewer assign-
ments and aggregation rules for strategyproofness and group
unanimity (efficiency). Prior works on this topic consider a
specific and restricted class of conflict graphs - - those with
one-to-one relations between papers and reviewers – which
do not capture conference peer review settings. We consider
a more general class of conflict graphs and present an frame-
work based on the partitioning-based method [Alon et al.,
2011], which we show can achieve group unanimous and strat-
egyproofness. The key idea is to assign a paper to a reviewer
only if there is no path between this paper and reviewer in
the conflict graph C. We then empirically demonstrate, using
submission data from the ICLR-17 conference, that this class
of conflict graphs is indeed representative of peer review set-
tings. In addition to the feasibility, we present a simple trick
to improve the practical appeal of our framework (and more
generally the partitioning method) to conference peer review.

4.1 The Divide-and-Rank Framework
We now present our “Divide-and-Rank” framework consist-
ing of the reviewer assignment algorithm (Algorithm 1) and
the rank aggregation algorithm (Algorithm 2). At a higher
level, our framework performs a partition of the reviewers and
papers for assignment, and aggregates the reviews by comput-
ing a ranking which is consistent with any group agreements.
Divide-and-Rank works for a general conflict graph C as long
as the conflict graph can be divided into two reasonably-sized
disconnected components.

Importantly, the framework is simple yet flexible in that the
assignment within each partition and the aggregation among
certain groups of papers can leverage any existing algorithm
for assignment and aggregation respectively, which is useful as
it allows to further optimize various other metrics in addition
to strategyproofness and unanimity.

The Divide-and-Rank assignment algorithm begins by par-
titioning the conflict graph into two disconnected components



Algorithm 1 Divide-and-Rank assignment
Input: conflict graph C, parameters �, µ, assignment algo-

rithm A
Output: an assignment of reviewers to papers

1: pRC ,PCq, pR sC ,P sCq – PartitionpC,�, µq
2: use algorithm A to assign papers P sC to reviewers RC
3: use algorithm A to assign papers PC to reviewers R sC
4: return the union of assignments from step 2 and 3
5:
6: procedure PARTITION(conflict graph C, parameters �, µ)
7: run a BFS on C to get connected K components

tpRk,PkquKk“1
8: let rk “ |Rk|, pk “ |Pk|, @k P rKs
9: initialize a table T r¨, ¨, ¨s P t0, 1uKˆpm`1qˆpn`1q so

that T r1, r1, p1s “ T r1, 0, 0s “ 1, otherwise 0
10: for k “ 2 to K do
11: T rk, r, ps “ T rk ´ 1, r, ps _T rk ´ 1, r ´ rk, p´

pks, @0 § r § m, 0 § p § n

12: end for
13: for 0 § r § m, 0 § p § n, if there is no T rK, r, ps “

1 such that maxt p
m´r ,

n´p
r u § µ

� , return ERROR

14: use the standard backtracking in the table T r¨, ¨, ¨s to
return pRC ,PCq and pR sC ,P sCq

15: end procedure

that meet the requirements specified by µ and �. Although
dividing into more groups can lead to similar unanimity and
strategyproof properties, we use two groups for simplicity and
computational efficiency. The subroutine Partition first runs a
breadth-first-search (BFS) algorithm to partition the original
conflict graph into K connected components, where the kth
connected component contains rk • 0 reviewers and pk • 0
papers. Next, the algorithm performs a dynamic programming
to compute all the possible subset sums achievable by the K

connected components. Here T rk, r, ps “ 1 means that there
exists a partition of the first k components such that one side
of the partition has r reviewers and p papers, and 0 otherwise.
The last step is to check whether there exists a subset C satis-
fying the requirement, and if so, runs a standard backtracking
algorithm along the table to find the actual subset C. Clearly
the Partition runs in OpKnmq, and since K § n`m, it runs
in polynomial time in the size of the input conflict graph C.

In the next step, the algorithm assigns papers to reviewers
in a fashion that guarantees each paper is going to be reviewed
by at least � reviewers and each reviewer reviews at most µ
papers. The assignment of papers in any individual component
(to reviewers in the other component) can be done using any
assignment algorithm (taken as an input A) as long as the algo-
rithm can satisfy the pµ,�q-requirements. Possible choices for
the algorithm A include the popular Toronto paper matching
system [Charlin and Zemel, 2013] and others [Hartvigsen et
al., 1999, Garg et al., 2010, Stelmakh et al., 2018].

We then introduce the aggregation procedure in Algorithm 2.
Generally speaking, the papers in each component are ag-
gregated separately using the subroutine Contract-and-Sort.
This aggregation in Contract-and-Sort is performed by a
topological ordering of all strongly connected components
(SCCs) according to the reviews, and then ranking the pa-

Algorithm 2 Divide-and-Rank aggregation

Input: profile ⇡ “ p⇡p1qpP1q, . . . ,⇡pmqpPmqq, groups
pRC ,PCq, pR sC ,P sCq with |PC | • |P sC |, aggregation al-
gorithm B

Output: total ranking of all papers
1: compute ⇡C as the restriction of profile ⇡ to only papers

in PC , and ⇡C̄ as the restriction of profile ⇡ to only papers
in P sC

2: ⇡C – Contract-and-SortpB,⇡Cq
3: ⇡ sC – Contract-and-SortpB,⇡C̄q
4: define I “

´Y
n

|PC |
]
,

Y
2n

|PC |
]
, ..., n

¯

5: return total ranking obtained by filling papers in PC into
positions in I in order given by ⇡C , and papers in P sC into
positions in rnszI in order given by ⇡ sC

6:
7: procedure CONTRACT-AND-SORT(aggregation algo-

rithm B, profile r⇡ “ p⇡p1q
, . . . ,⇡

pm1qq)
8: build a directed graph Gr⇡ with the papers in r⇡ as its

vertices and no edges
9: for each i P rm1s do

10: Suppose ⇡piq “ ppj1 ° . . . ° pjti
), add a directed

edge from pjk to pjk`1 in Gr⇡ , @k P rti ´ 1s
11: end for
12: compute a topological ordering of the strongly con-

nected components (SCCs) in Gr⇡
13: for every SCC in Gr⇡ , compute a permutation of the

papers in the component using algorithm B
14: return the permutation of all papers that is consis-

tent with the topological ordering of the SCCs and the
permutations within the SCCs

15: end procedure

pers within each set using any arbitrary aggregation algorithm
(taken as an input B)1. Possible choices for the algorithm B
include the modified Borda count [Emerson, 2013], Plackett-
Luce aggregation [Hajek et al., 2014], or others [Caragiannis
et al., 2017]. Moving back to Algorithm 2, the two rankings
returned by Contract-and-Sort respectively for the two com-
ponents are simply interlaced to obtain a total ranking over
all the papers: the slots for C are reserved in set I , and rnszI
contain the slots for the remaining papers. In our extended
version of the paper we also show that the interleaving only
causes a small change w.r.t an underlying optimal ranking.
The following theorem now shows that Divide-and-Rank

satisfies group unanimity and is strategyproof.

Theorem 1. Suppose C can be partitioned into two groups
pRC ,PCq and pR sC ,P sCq such that there are no edges in C

across the groups and that max
 |PC |

|RÑC | ,
|PÑC |
|RC |

(
§ µ

� . Then
Divide-and-Rank is group unanimous and strategyproof.

Remark. Our Divide-and-Rank framework aptly handles
the various nuances of real-world conferences peer review,
which render other existing methods inapplicable. This in-
cludes the facts that each reviewer can have conflicts with

1In the case where there are multiple topological orderings, any
one of them suffices.



multiple papers and each paper can have conflicts with multi-
ple reviewers, and furthermore that each reviewer may review
only a subset of papers. Even under this challenging setting,
our framework guarantees that no reviewer can influence the
ranking of her own paper via strategic behavior, and that it is
efficient from a social choice perspective.
Extension to review scores. Our framework can easily ex-
tend to a score-based setting, wherein each reviewer ri pro-
vides a score sij for every paper pj P Pi. The assignment
algorithm remains the same in this setting; for aggregation,
we can use the same procedure with the ranking induced by
the review scores. The only difference is that in step 10 of
Contract-and-Sort, we add an edge between every pair of
papers pj1 Ñ pj2 if sij1 ° sij2 . This makes sure that the
graph fully reflects the opinion of the reviewer and do not
impose constraints on papers that are equally rated. On the
other hand, the aggregation algorithm B can also leverage the
review scores for a more granularized ranking (e.g., average
scores). Our definition of unanimity and strategyproof can
also be straightforwardly extended to the score setting, and our
framework still preserves these properties under these defini-
tions. See our extended version of this paper [Xu et al., 2018]
for further details.

4.2 Analysis of ICLR-17 Submissions
Our Divide-and-Rank framework is based on a partitioning
method that relies on a partition of the set of reviewers and
papers so that there is no conflict across the partition. In this
subsection we restrict attention to the authorship conflict graph,
where we empirically verify that the partitioning conditions
indeed hold in a conference peer review setting using data
from the ICLR-17 conference. We then demonstrate how to
make the partitioning method more appealing for conference
peer review. In particular, we show that removing only a small
number of reviewers can drastically reduce the size of the
largest component in the conflict graph, thus providing great
flexibility towards partitioning the papers and authors.

We analyzed all papers submitted to ICLR-17 with the
given authorship relationship as the conflict graph. ICLR-17
received 489 submissions by 1,417 authors; we believe it is a
good representative of a medium-sized modern conference. It
is important to note that we consider only the set of authors
as the entire reviewer pool (since we do not have access to
the actual reviewer identities). Adding reviewers from outside
the set of authors would only improve the results since these
additional reviewers will have no edges in the (authorship)
conflict graph. We first investigate the existence of (moder-
ately sized) components in the conflict graph,which shows
that the authorship graph is not only disconnected, but also
has more than 250 components. The largest connected compo-
nent(CC) contains 133 (that is, about 27%) of all papers, and
the 2nd largest CC is much smaller, hence empirically verify
our assumptions in Theorem 1.

The partitioning method is previously considered for the
problem of peer grading [Kahng et al., 2018], where the setting
is quite homogeneous in that each reviewer (student) goes
through the same course and hence any paper (homework)
can be assigned to any reviewer. In peer review, however,
different reviewers typically have different areas of expertise
and hence their abilities to review any paper varies by the area

#Authors removed from reviewer pool
0 5 10 15 20 50 100

#Components 253 268 278 292 302 334 389
1st #Authors 371 313 304 228 205 55 28
1st #Papers 133 114 110 82 74 18 8

Table 1: Statistics of the conflict graph on removing a small number
(† 7%) of authors from the reviewer pool of 1,417 authors.

of the paper. In order to accommodate this diversity in area
of expertise in peer review, one must have a greater flexibility
in terms of paper assignment. In our analysis, the largest CC
contains 372 authors and 133 papers. It is reasonable to expect
that a large number of reviewers with expertise required to
review these 133 papers would also be in the same CC, thus
a naı̈ve application of Divide-and-Rank would assign these
133 papers to reviewers who may have a much less expertise.
This is indeed a concern, and in what follows, we discuss a
simple yet effective way to ameliorate this problem.

We show empirically using the ICLR-17 data that by remov-
ing only a small number of authors from the reviewer pool of
the ICLR-17 data, the conflict graph can be much more sparse,
allowing for more flexible application of Divide-and-Rank.
Specifically, we remove a small fraction of authors from the re-
viewer pool using the simple heuristic of removing the authors
with the maximum degree in the (authorship) conflict graph.
We then study the statistics of the resulting conflict graph (with
all papers but only the remaining reviewers) in terms of the
numbers and sizes of the CC. The results are shown in Table 1.
After removing a small fraction – 100 authors which is only
about 7% – the number of papers in the largest CC reduces by
94% to just 8. Likewise, the number of authors in the largest
CC reduces to as small as 28 from 371 originally. It demon-
strates that despite all the idiosyncrasies of conference peer
review, the Divide-and-Rank and partitioning can be made
practically applicable.

5 Negative Results
The positive results in the previous section focus on group
unanimity, which is weaker than the conventional notion of
unanimity, also known as pairwise unanimity. Moreover, the
framework induces a disconnected review graph whereas the
review graphs of conferences today are typically connected
[Shah et al., 2017]. It is thus natural to ask the following: Can
a peer review system with a connected reviewer graph satisfy
these properties? Can a strategyproof peer review system be
pairwise unanimous? In this section we present some negative
results toward these questions, thereby highlighting the criti-
cal impediments towards stronger results. Before stating our
results, we give another notion of strategyproofness, which
is significantly weaker than the notion of strategyproofness
(Definition 1), and is hence termed as weak strategyproofness.
Definition 4 (Weak Strategyproofness, WSP). A review
process pG, fq is called weakly strategyproof, if for ev-
ery reviewer ri, there exists some paper pj P P such
that for every pair of distinct profiles (under assignment
G) ⇡ “ p⇡p1q

, . . . ,⇡
pi´1q

,⇡
piq
,⇡

pi`1q
, . . . ,⇡

pmqq and ⇡1 “
p⇡p1q

, . . . ,⇡
pi´1q

,⇡
piq1

,⇡
pi`1q

, . . . ,⇡
pmqq, it is guaranteed

that fjp⇡q “ fjp⇡1q.



Unanimity Strategyproof Requirement on G Possible? Reference
Pairwise None Mild (see Corollary 1) No Theorem 2
Group Weak Mild (Connected G) Conjecture: No Proposition 2
Group Yes None Yes Theorem 1

Table 2: Summary of our negative results (first two rows of the table), and a comparison to our positive result (third row).

In other words, weak strategyproofness requires for each
reviewer there is at least one paper (not necessarily authored
by this reviewer) whose ranking cannot be influenced by the
reviewer. As the name suggests, strategyproofness is strictly
stronger than weak strategyproofness, when each reviewer
has at least one paper of conflict. We define the notion of
weak strategyproofness mainly for our theoretical purposes
of negative results, since WSP is too weak to be practical.
However, even this extremely weak requirement is impossible
to satisfy.

We summarize our results in Table 2. We show the property
of group unanimity and strategyproofness for Divide-and-

Rank; as the first direction of possible extension, we show in
Theorem 2 that the slightly stronger notion of pairwise una-
nimity is impossible to satisfy under mild assumptions, even
without strategyproof constraints. Then we explore the second
direction of extension, by requiring a connected G, and give
conjectures that group unanimity and weak strategyproofness
is impossible under this setting.

5.1 Impossibility of Pairwise Unanimity
In order to precisely state our result, we first introduce the
notion of a review-relation graph H. Given a paper-review
assignment tPiumi“1, the review-relation graph H is an undi-
rected graph with rns as its vertices and where any two papers
pj1 and pj2 are connected iff there exists at least one reviewer
who reviews both the papers. With this preliminary in place,
we are now ready to state our results:
Theorem 2. If H has a cycle of length 3 or more and there
is no single reviewer reviews all the papers in the cycle, then
there is no review process pG, fq that is pairwise unanimous.

The proof of Theorem 2 is similar to a Condorcet cycle
proof. In the corollary below we give some direct implications
of the condition in Theorem 2 when |P1| “ ¨ ¨ ¨ “ |Pm| “ µ,
that is, when every reviewer ranks a same number of papers.
Corollary 1. Suppose |P1| “ ¨ ¨ ¨ “ |Pm| “ µ • 2. If pG, fq
is pairwise unanimous, the following conditions hold:

(i) H does not contain any cycles of length µ ` 1 or more.
(ii) The set of papers reviewed by any pair of reviewers ri1

and ri2 must satisfy the condition |Pi1 XPi2 | P t0, 1, µu.
In words, if a pair of reviewers review more than one
common papers, they must review exactly the same set.

(iii) The number of distinct sets in Pi, . . . ,Pm is at most
n´1
µ´1 .

Remark. In modern conferences [Shah et al., 2017], each
reviewer usually reviews 3 to 6 papers. If the review process is
pairwise unanimous, by Corollary 1(iii) the number of distinct
review sets is much smaller than the number of reviewers; this
severely limits the design of review sets, since many reviewers
would be necessitated to review identical sets of papers. (ii) is
also a relatively strong requirement, since the specialization

of reviewers might not allow for such limit of the intersection
of review sets. For instance, there is a large number of pairs
of reviewers who review more than one common paper but
none with the same set of papers [Shah et al., 2017]. In
summary, Theorem 2 and Corollary 1 show the difficulty to
satisfy pairwise unanimity, even without strategyproofness.

5.2 Group Unanimity and Strategyproofness for a
Connected Review Graph

Having shown that pairwise unanimity is too strong a require-
ment to satisfy, we now consider another direction for exten-
sion – conditions on the review graph G. A natural question
follows: Under what condition on the review graph G are both
group unanimity and strategyproofness possible? Although
we will leave the question of finding the exact condition open,
we conjecture that if we require G to be connected, then group
unanimity and strategyproofness cannot be simultaneously
satisfied. To show our insights, we analyze an extremely sim-
plified review setting and present a negative result under this
setting.
Proposition 2. Consider any n • 4 and suppose P “ P1 Y
P2YP3YP4, where P1, P2, P3, P4 are disjoint nonempty sets
of papers. Consider a review graph G with m “ 3 reviewers,
where reviewer r1 reviews tP1, P2u, r2 reviews tP2, P3u, and
r3 reviews tP3, P4u. Then there is no aggregation function f

that is both weakly strategyproof and group unanimous.
Proposition 2 thus shows for simple review graph consid-

ered in the statement, group unanimity and weak strategyproof-
ness cannot hold at the same time. We conjecture that such a
negative result may hold for more general connected review
graphs, which could be shown by identifying a component of
the general review graph satisfying the condition of Proposi-
tion 2. This shows that our design process of the review graph
in Section 4 is quite essential.

6 Discussion
We provide a framework and associated algorithms to impart
strategyproofness to conference peer review. Our framework,
besides guaranteeing strategyproofness, is importantly very
flexible in allowing the program chairs to use the decision-
making criteria of their choice. We complement these positive
results with negative results showing that it is impossible for
any algorithm to remain strategyproof and satisfy the stronger
notion of pairwise unanimity. Future work includes consider-
ing efficiency from a statistical perspective and characterizing
the precise set of conflict-of-interest graphs that permit (or
not) strategyproofness.
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