On Learning Language-Invariant Representations
for Universal Machine Translation

Han Zhao, Junjie Hu, Andrej Risteski
{han.zhao, junjieh, aristesk}@cs.cmu.edu

Carnegie Mellon University

Carnegie Mellon University



Recent Success of Neural Machine Translation

Machine Translation on WMT2014 English-French
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Other methods  -#- State-of-the-art methods

Machine Translation, ~3M parallel sentences [Cho et al. 2014; Devlin et al. 2014]



Neural Machine Translation is Data Hungry
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Figure from [Gu et al. 18]

Source Target Corpora size BLEU Scores
English French ~3M ~40
English German ~1.92M ~35
Finnish English ~1.96M ~34
Romanian English ~400K ~30

WMT ’16-19, Europarl Parallel Corpus 4



Typical Pipeline of Multilingual Machine Translation

Separate MT systems: Hard to maintain all systems

Pivot methods: src-to-pivot & pivot-to-tgt translations
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Machine translation by triangulation: Making effective use of multi-parallel corpora, [Cohn et al 07]




Cross-Lingual Representations by Neural Models

- Language similarity: similar words, grammar, order.

- Shared space: learning word/sentence
representations jointly
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Photo credit: https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html



https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html
https://ai.googleblog.com/2016/11/zero-shot-translation-with-googles.html

Why Universal Machine Translation (UMT)?

Single model: many-to-one, one-to-many

Zero-shot translation: improve low-resource translation

Training
English Google Neural English
Machine Translation
Japanese Japanese
Korean Korean

Johnson et al. Google's Multilingual Neural Machine Translation System: Enabling Zero-Shot Translation, TACL 2017.



Recent Advances of UMT

Language coverage: 100+ languages in Google’s M4
Web-mined data: 25 billion examples
Quality: +5 BLEU score over all 100+ languages
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Massively Multilingual Neural Machine Translation in the Wild: Findings and Challenges [Arivazhagan et al. 19]



Challenge: Theoretical Understanding of UMT

Despite the empirical success, theoretical understanding
IS only nascent

- Translation Error: Is there a performance limit even
with unlimited amount of computation & data

- Sample Complexity: How many language pairs are
required to train UMT?
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Challenge: Theoretical Understanding of UMT

Despite the empirical success, theoretical understanding
IS only nascent

- Translation Error: Is there a performance limit even with

unlimited amount of computation & data

- Without assumption on the parallel corpus used for
training, at least one translation task has to incur a large
error

- Sample Complexity: How many language pairs are

required to train UMT?

- Under an encoder-decoder generative assumption of the
data, a linear number of translation pairs suffice for the
purpose of UMT



A Theoretical Model for UMT

Let £ = {English, French, German, Chinese, ...} be the set
of all languages of interest.

For each L € L, we associate with L an alphabet 25
sk
A sentence x in L is a sequence of symbols from ZL, i.e., = ZL

/
For a pair of languages L, L , We use DL,L’ to denote the joint
distribution over the parallel sentence pairs from L and L
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A Theoretical Model for UMT
Problem Setting:

For each pair of languages L L', there exists a true translator
ARTEDIE

Given a translator J from L to L', we use the 0-1 loss to measure the
translation quality w.r.t. the true translator:

Errs Y () == Ep[l(£(X), f1_ 1 (X))]

where £z, 2") = 0iff 1+ — o/,

There exists a perfect translator that translates input sentence from
any language to a target language L.

fix)= ) Wz eXp)- fip(z)

L'el

Can we recover the perfect translator through UMT?



Universal Machine Translation

Universal Language Mapping:

A function mapping ¢ : U Y7, — Z is called universal if
1€ K]

94Di = 94Dy, Vi # J
Different languages have the same distribution under representation Z
s B o'
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An Impossibility Theorem
A simple warm-up (Two-to-One):

Theorem (informal): Consider a restricted setting of universal machine
translation task with two source languages and one target language. If 9 is
a universal language mapping, then for any decoder h : Z — >7 ,

Erry " (ho g) + Errg 7" (ho g) > drv(Dr,, (L), Dr,,1(L)).

Uncertainty Principle: UMT has to make a large error
on at least one translation task




An Impossibility Theorem

A simple warm-up (Two-to-One):

Theorem (informal): Consider a restricted setting of universal machine
translation task with two source languages and one target language. If 9 is
a universal language mapping, then for any decoder h : Z — >7 ,

Erry " (ho g) + Errg 7" (ho g) > drv(Dr,, (L), Dr,,1(L)).

.) Translation errors from Los Lito I |

Dlstance between sentence
dlstrlbutlons over L

This is an information-theoretic lower bound l.e. algorlthm mdependent

The theorem still holds even if we use different encoders for different

languages, but wouldn’t hold any more if we use target-dependent
decoder!

The lower bound gets larger whenever target data are dissimilar between
different translation tasks 14



An Impossibility Theorem
In general (Many-to-One):
Maximum Translation Error:
max ErrlL)i_}L(h o0g) > lmax E(i,j)

1€ K]

Average Translation Error:

L—>L 1 .-
—Z Errgy " (ho g) > K(K—1)Z, E(i,7)

E(1,7) measures how different two translation ./
tasks are:

E(i,j) == drv(Dr,,.(L),Dr,; (L))




A Generative Model of UMT

The impossibility theorem holds in the worst case without any assumption

on the data generating distribution of parallel corpus. What if we assume
an encoder-decoder generative process?
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We assume that Er € GLy(R), Dy, = E; ', Vk € [K]

16



A Generative Model of UMT

Why this assumption on data generative process helps?

L] b [ ] e e e [Ix)

Vi, j € |K], ErriL)i_)L(h og)+ Err%ﬁ,_}L

(h O g) Z dTV (DLi,L(L)apLj,L(L)) =0

The lower bound still holds, but it gracefully reduces to 0 under this
encoder-decoder assumption on data generative process. 17



How Many Language Pairs Suffices?

Naively, one might think we need Q(K?) language pairs, one for each pair.

Our result: under some mild assumptions, only a linear number O(K) of
translation pairs suffices!

Translation Graph: H
- Each node = a language
- Two nodes are connected if we see the corresponding translation pair

- H Is assumed to be connected: we need to see every language at
least once

- The diameter of H is bounded by K [ 7 }/[ Lo ]
0
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How Many Language Pairs Suffices?

Translation Graph: H
- Each node = a language

- Two nodes are connected if we see the corresponding translation pair

- H is assumed to be connected: we need to see every language at least
once

- The diameter of H is bounded by K
Theorem (informal): Let diam(H ) be the diameter of the translation graph

H, then for any pair of language [;, L;, the translation error has the
following upper bound:

E(EAiaEA,j)Sp'diam(H)°€2 [ 7 ]/[ Lo }
0

Ll LK ]

19



How Many Language Pairs Suffices?

Theorem (informal): Let diam(H ) be the diameter of the translation graph
H, then for any pair of language [;, L,, the translation error has the
following upper bound:

e(Ei,Ej) < p-diam(H) - €

e(Ei, Ej) is measured w.r.t. the ground truth encoder-decoder
P is the Lipschitz-constant of the ground truth encoder and decoder
e Is the maximum error on each seen translation pair

- . - 2
For a specified translation error €, a corpora containing O(1/€%) parallel

sentences suffices
<e Lo ]
Lo

< € —

We use a epsilon-net argument 7
to prove this result Ly K Jzo




Summary

Without data generating assumption: An Impossibility Theorem,
UMT has to incur a large error on at least one translation pair.

Theorem (informal): Consider a restricted setting of universal machine

translation task with two source languages and one target language. If 9 is a universal
language mapping, then for any decoderh : Z — X7 ,

Erry " (ho g) + Errg! 7" (ho g) > drv(Dr,, (L), Dr,,1(L)).

With a natural data generating assumption:

Linear number of translation pairs suffices!

Theorem (informal): Let diam(H) be the diameter of the translation graph H, then for
any pair of language L;, L; , the translation error has the following upper bound:

e(E;, E;) < p - diam(H) - € r J</[ Ly |

< € <€
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