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Abstract
Due to the ability of deep neural nets to learn
rich representations, recent advances in unsuper-
vised domain adaptation have focused on learning
domain-invariant features that achieve a small er-
ror on the source domain. The hope is that the
learnt representation, together with the hypothesis
learnt from the source domain, can generalize to
the target domain. In this paper, we first construct
a simple counterexample showing that, contrary
to common belief, the above conditions are not
sufficient to guarantee successful domain adapta-
tion. In particular, the counterexample exhibits
conditional shift: the class-conditional distribu-
tions of input features change between source and
target domains. To give a sufficient condition for
domain adaptation, we propose a natural and in-
terpretable generalization upper bound that explic-
itly takes into account the aforementioned shift.
Moreover, we shed new light on the problem by
proving an information-theoretic lower bound on
the joint error of any domain adaptation method
that attempts to learn invariant representations.
Our result characterizes a fundamental tradeoff
between learning invariant representations and
achieving small joint error on both domains when
the marginal label distributions differ from source
to target. Finally, we conduct experiments on
real-world datasets that corroborate our theoreti-
cal findings. We believe these insights are helpful
in guiding the future design of domain adaptation
and representation learning algorithms.

1. Introduction
The recent successes of supervised deep learning methods
have been partially attributed to rich datasets and increasing
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computational power. However, in many critical applica-
tions, e.g., self-driving cars or personal healthcare, it is often
prohibitively expensive and time-consuming to collect large-
scale supervised training data. Unsupervised domain adap-
tation (DA) focuses on such limitations by trying to transfer
knowledge from a labeled source domain to an unlabeled tar-
get domain, and a large body of work tries to achieve this by
exploring domain-invariant structures and representations
to bridge the gap. Theoretical results (Ben-David et al.,
2010; Mansour et al., 2009a; Mansour & Schain, 2012) and
algorithms (Glorot et al., 2011; Becker et al., 2013; Ajakan
et al., 2014; Adel et al., 2017; Pei et al., 2018) under this
setting are abundant.

Due to the ability of deep neural nets to learn rich feature
representations, recent advances in domain adaptation have
focused on using these networks to learn invariant repre-
sentations, i.e., intermediate features whose distribution is
the same in source and target domains, while at the same
time achieving small error on the source domain. The hope
is that the learnt intermediate representation, together with
the hypothesis learnt using labeled data from the source
domain, can generalize to the target domain. Nevertheless,
from a theoretical standpoint, it is not at all clear whether
aligned representations and small source error are sufficient
to guarantee good generalization on the target domain. In
fact, despite being successfully applied in various applica-
tions (Zhang et al., 2017; Hoffman et al., 2017), it has also
been reported that such methods fail to generalize in certain
closely related source/target pairs, e.g., digit classification
from MNIST to SVHN (Ganin et al., 2016).

Given the wide application of domain adaptation methods
based on learning invariant representations, we attempt in
this paper to answer the following important and intriguing
question:

Is finding invariant representations while at the
same time achieving a small source error suffi-
cient to guarantee a small target error? If not,
under what conditions is it?

Contrary to common belief, we give a negative answer to
the above question by constructing a simple example show-
ing that these two conditions are not sufficient to guarantee
target generalization, even in the case of perfectly aligned
representations between the source and target domains. In
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Figure 1. A counterexample where invariant representations lead to large joint error on source and target domains. Before transformation
of g(·), h⇤(x) = 1 iff x 2 (�1/2, 3/2) achieves perfect classification on both domains. After transformation, source and target
distributions are perfectly aligned, but no hypothesis can achieve a small joint error.

fact, our example shows that the objective of learning invari-
ant representations while minimizing the source error can
actually be hurtful, in the sense that the better the objective,
the larger the target error. At a colloquial level, this hap-
pens because learning invariant representations can break
the originally favorable underlying problem structure, i.e.,
close labeling functions and conditional distributions. To
understand when such methods work, we propose a general-
ization upper bound as a sufficient condition that explicitly
takes into account the conditional shift between source and
target domains. The proposed upper bound admits a natural
interpretation and decomposition in domain adaptation; we
show that it is tighter than existing results in certain cases.

Simultaneously, to understand what the necessary condi-
tions for representation based approaches to work are, we
prove an information-theoretic lower bound on the joint
error of both domains for any algorithm based on learning
invariant representations. Our result complements the above
upper bound and also extends the constructed example to
more general settings. The lower bound sheds new light
on this problem by characterizing a fundamental tradeoff
between learning invariant representations and achieving
small joint error on both domains when the marginal label
distributions differ from source to target. Our lower bound
directly implies that minimizing source error while achiev-
ing invariant representation will only increase the target
error. We conduct experiments on real-world datasets that
corroborate this theoretical implication. Together with the
generalization upper bound, our results suggest that adap-
tation should be designed to align the label distribution as
well when learning an invariant representation (c.f. Sec. 4.3).
We believe these insights will be helpful to guide the future
design of domain adaptation and representation learning
algorithms.

2. Preliminary
We first introduce the notations used throughout this pa-
per and review a theoretical model for domain adaptation
(DA) (Kifer et al., 2004; Ben-David et al., 2007; Blitzer
et al., 2008; Ben-David et al., 2010).

Notations We use X and Y to denote the input and output
space, respectively. Similarly, Z stands for the represen-
tation space induced from X by a feature transformation
g : X 7! Z . Accordingly, we use X, Y, Z to denote the
random variables which take values in X , Y, Z , respectively.
In this work, domain corresponds to a distribution D on the
input space X and a labeling function f : X ! [0, 1]. In the
domain adaptation setting, we use hDS , fSi and hDT , fT i

to denote the source and target domains, respectively. A
hypothesis is a function h : X ! {0, 1}. The error of a
hypothesis h w.r.t. the labeling function f under distribu-
tion DS is defined as: "S(h, f) := Ex⇠DS [|h(x) � f(x)|].
When f and h are binary classification functions, this defini-
tion reduces to the probability that h disagrees with f under
DS : Ex⇠DS [|h(x) � f(x)|] = Ex⇠DS [I(f(x) 6= h(x))] =
Prx⇠DS (f(x) 6= h(x)). In this work, we focus on the de-
terministic setting where the output Y = f(X) is given by a
deterministic labeling function f defined on the correspond-
ing domain. For two functions g and h with compatible
domains and ranges, we use h � g to denote the function
composition h(g(·)). Other notations will be introduced in
the context when necessary.

2.1. Problem Setup

We consider the unsupervised domain adaptation problem
where the learning algorithm has access to a set of n labeled
points {(xi, yi)}n

i=1 2 (X ⇥ Y)n sampled i.i.d. from the
source domain and a set of unlabeled points {xj}

m

j=1 2 X
m

sampled i.i.d. from the target domain. At a colloquial level,
the goal of an unsupervised domain adaptation algorithm
is to generalize well on the target domain by learning from
labeled samples from the source domain as well as unla-
beled samples from the target domain. Formally, let the
risk of hypothesis h be the error of h w.r.t. the true labeling
function under domain DS , i.e., "S(h) := "S(h, fS). As
commonly used in computational learning theory, we de-
note by b"S(h) the empirical risk of h on the source domain.
Similarly, we use "T (h) and b"T (h) to mean the true risk
and the empirical risk on the target domain. The problem
of domain adaptation considered in this work can be stated
as: under what conditions and by what algorithms can we
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guarantee that a small training error b"S(h) implies a small
test error "T (h)? Clearly, this goal is not always possible if
the source and target domains are far away from each other.

2.2. A Theoretical Model for Domain Adaptation

To measure the similarity between two domains, it is crucial
to define a discrepancy measure between them. To this
end, Ben-David et al. (2010) proposed the H-divergence to
measure the distance between two distributions:

Definition 2.1 (H-divergence). Let H be a hypothesis class
on input space X , and AH be the collection of subsets
of X that are the support of some hypothesis in H, i.e.,
AH := {h

�1(1) | h 2 H}. The distance between two
distributions D and D

0 based on H is: dH(D, D
0) :=

sup
A2AH

| PrD(A) � PrD0(A)|. 1

H-divergence is particularly favorable in the analysis of
domain adaptation with binary classification problems,
and it had also been generalized to the discrepancy dis-
tance (Cortes et al., 2008; Mansour et al., 2009a;b; Cortes &
Mohri, 2014) for general loss functions, including the one
for regression problems. Both H-divergence and the discrep-
ancy distance can be estimated using finite unlabeled sam-
ples from both domains when H has a finite VC-dimension.

One flexibility of the H-divergence is that its power on
measuring the distance between two distributions can be
controlled by the richness of the hypothesis class H. To
see this, first consider the situation where H is very restric-
tive so that it only contains the constant functions h ⌘ 0
and h ⌘ 1. In this case, it can be readily verified by the
definition that dH(D, D

0) = 0, 8 D, D
0. On the other ex-

treme, if H contains all the measurable binary functions,
then dH(D, D

0) = 0 iff D(·) = D
0(·) almost surely. In

this case the H-divergence reduces to the total variation, or
equivalently the L1 distance, between the two distributions.

Given a hypothesis class H, we define its symmetric differ-
ence w.r.t. itself as: H�H = {h(x) � h

0(x) | h, h
0
2 H},

where � is the xor operation. Let h
⇤ be the optimal hypoth-

esis that achieves the minimum joint risk on both the source
and target domains: h

⇤ := arg min
h2H

"S(h) + "T (h),
and let �

⇤ denote the joint risk of the optimal hypothesis h
⇤:

�
⇤ := "S(h⇤)+"T (h⇤). Ben-David et al. (2007) proved the

following generalization bound on the target risk in terms of
the empirical source risk and the discrepancy between the
source and target domains:

Theorem 2.1 (Ben-David et al. (2007)). Let H be a hypoth-
esis space of VC-dimension d and bDS (resp. bDT ) be the
empirical distribution induced by a sample of size n drawn

1To be precise, Ben-David et al. (2007)’s original definition of
H-divergence has a factor of 2, we choose the current definition as
the constant factor is inessential.

from DS (resp. DT ). Then w.p. at least 1 � �, 8h 2 H,

"T (h)  b"S(h) +
1

2
dH�H( bDS , bDT )

+ �
⇤ + O

 r
d log n + log(1/�)

n

!
. (1)

The bound depends on �
⇤, the optimal joint risk that can

be achieved by the hypotheses in H. The intuition is the
following: if �

⇤ is large, we cannot hope for a successful
domain adaptation. Later in Sec. 4.3, we shall get back to
this term to show an information-theoretic lower bound on it
for any approach based on learning invariant representations.

Theorem 2.1 is the foundation of many recent works on
unsupervised domain adaptation via learning invariant rep-
resentations (Ajakan et al., 2014; Ganin et al., 2016; Zhao
et al., 2018b; Pei et al., 2018; Zhao et al., 2018a). It has
also inspired various applications of domain adaptation with
adversarial learning, e.g., video analysis (Hoffman et al.,
2016; Shrivastava et al., 2016; Hoffman et al., 2017; Tzeng
et al., 2017), natural language understanding (Zhang et al.,
2017; Fu et al., 2017), speech recognition (Zhao et al., 2019;
Hosseini-Asl et al., 2018), to name a few.

At a high level, the key idea is to learn a rich and
parametrized feature transformation g : X 7! Z such that
the induced source and target distributions (on Z) are close,
as measured by the H-divergence. We call g an invariant
representation w.r.t. H if dH(Dg

S
, D

g

T
) = 0, where D

g

S
/D

g

T

is the induced source/target distribution. At the same time,
these algorithms also try to find new hypothesis (on the
representation space Z) to achieve a small empirical error
on the source domain. As a whole algorithm, these two
procedures corresponds to simultaneously finding invariant
representations and hypothesis to minimize the first two
terms in the generalization upper bound of Theorem 2.1.

3. Related Work
A number of adaptation approaches based on learning in-
variant representations have been proposed in recent years.
Although in this paper we mainly focus on using the H-
divergence to characterize the discrepancy between two
distributions, other distance measures can be used as well,
e.g., the maximum mean discrepancy (MMD) (Long et al.,
2014; 2015; 2016), the Wasserstein distance (Courty et al.,
2017b;a; Shen et al., 2018; Lee & Raginsky, 2018), etc.

Under the theoretical framework of the H-divergence, Ganin
et al. (2016) propose a domain adversarial neural network
(DANN) to learn the domain invariant features. Adversarial
training techniques that aim to build feature representations
that are indistinguishable between source and target do-
mains have been proposed in the last few years (Ajakan
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et al., 2014; Ganin et al., 2016). Specifically, one of the
central ideas is to use neural networks, which are powerful
function approximators, to approximate the H-divergence
between two domains (Kifer et al., 2004; Ben-David et al.,
2007; 2010). The overall algorithm can be viewed as a zero-
sum two-player game: one network tries to learn feature
representations that can fool the other network, whose goal
is to distinguish the representations generated on the source
domain from those generated on the target domain. In a
concurrent work, Johansson et al. (2019) also identified the
insufficiency of learning domain-invariant representation
for successful adaptation. They further analyzed the infor-
mation loss of non-invertible transformations, and proposed
a generalization upper bound that directly takes it into ac-
count. In our work, by showing an information-theoretic
lower bound on the joint error of these methods, we show
that although invariant representations can be achieved, it
does not necessarily translate to good generalization on the
target domain, in particular when the label distributions of
the two domains differ significantly.

Causal approaches based on conditional and label shifts for
domain adaptation also exist (Zhang et al., 2013; Gong et al.,
2016; Lipton et al., 2018; Azizzadenesheli et al., 2018). One
typical assumption made to simplify the analysis in this line
of work is that the source and target domains share the same
generative distribution and only differ at the marginal label
distributions. It is worth noting that Zhang et al. (2013) and
Gong et al. (2016) showed that both label and conditional
shift can be successfully corrected when the changes in the
generative distribution follow some parametric families. In
this work we focus on representation learning and do not
make such explicit assumptions.

4. Theoretical Analysis
Is finding invariant representations alone a sufficient con-
dition for the success of domain adaptation? Clearly it is
not. Consider the following simple counterexample: let
gc : X 7! Z be a constant function, where 8x 2 X ,
gc(x) = c 2 Z . Then for any discrepancy distance d(·, ·)
over two distributions, including the H-divergence, MMD,
and the Wasserstein distance, and for any distributions
DS , DT over the input space X , we have d(Dgc

S
, D

gc

T
) = 0,

where we use D
gc

S
(resp. D

gc

T
) to mean the induced source

(resp. target) distribution by the transformation gc over the
representation space Z . Furthermore, it is fairly easy to
construct source and target domains hDS , fSi, hDT , fT i,
such that for any hypothesis h : Z 7! Y , "T (h � gc) � 1/2,
while there exists a classification function f : X ! Y that
achieves small error, e.g., the labeling function.

One may argue, with good reason, that in the counterex-
ample above, the empirical source error b"S(h � gc) is also
large with high probability. Intuitively, this is because the

simple constant transformation function gc fails to retain
the discriminative information about the classification task
at hand, despite the fact that it can construct invariant repre-
sentations.

Is finding invariant representations and achieving a small
source error sufficient to guarantee small target error? In
this section we first give a negative answer to this question
by constructing a counterexample where there exists a non-
trivial transformation function g : X 7! Z and hypothesis
h : Z 7! Y such that both "S(h � g) and dH�H(Dg

S
, D

g

T
)

are small, while at the same time the target error "T (h�g) is
large. Motivated by this negative result, we proceed to prove
a generalization upper bound that explicitly characterizes
a sufficient condition for the success of domain adapta-
tion. We then complement the upper bound by showing
an information-theoretic lower bound on the joint error of
any domain adaptation approach based on learning invariant
representations.

4.1. Invariant Representation and Small Source Risk
are Not Sufficient

In this section, we shall construct a simple 1-dimensional
example where there exists a function h

⇤ : R 7! {0, 1}

that achieves zero error on both source and target domains.
Simultaneously, we show that there exists a transformation
function g : R 7! R under which the induced source and
target distributions are perfectly aligned, but every hypothe-
sis h : R 7! {0, 1} incurs a large joint error on the induced
source and target domains. The latter further implies that
if we find a hypothesis that achieves small error on the
source domain, then it has to incur a large error on the target
domain. We illustrate this example in Fig. 1.

Let X = Z = R and Y = {0, 1}. For a  b, we use U(a, b)
to denote the uniform distribution over [a, b]. Consider the
following source and target domains:

DS = U(�1, 0), fS(x) =

(
0, x  �1/2

1, x > �1/2

DT = U(1, 2), fT (x) =

(
0, x � 3/2

1, x < 3/2

In the above example, it is easy to verify that the interval
hypothesis h

⇤(x) = 1 iff x 2 (�1/2, 3/2) achieves perfect
classification on both domains.

Now consider the following transformation:

g(x) = Ix0(x) · (x + 1) + Ix>0(x) · (x � 1).

Since g(·) is a piecewise linear function, it follows that
D

Z

S
= D

Z

T
= U(0, 1), and for any distance metric d(·, ·)

over distributions, we have d(DZ

S
, D

Z

T
) = 0. But now for

any hypothesis h : R 7! {0, 1}, and 8x 2 [0, 1], h(x) will
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make an error in exactly one of the domains, hence

8h : R 7! {0, 1}, "S(h � g) + "T (h � g) = 1.

In other words, under the above invariant transformation g,
the smaller the source error, the larger the target error.

One may argue that this example seems to contradict the
generalization upper bound from Theorem 2.1, where the
first two terms correspond exactly to a small source error
and an invariant representation. The key to explain this
apparent contradiction lies in the third term of the upper
bound, �

⇤, i.e., the optimal joint error achievable on both
domains. In our example, when there is no transformation
applied to the input space, we show that h

⇤ achieves 0 error
on both domains, hence �

⇤ = minh2H "S(h) + "T (h) =
0. However, when the transformation g is applied to the
original input space, we prove that every hypothesis has joint
error 1 on the representation space, hence �

⇤

g
= 1. Since

we usually do not have access to the optimal hypothesis
on both domains, although the generalization bound still
holds on the representation space, it becomes vacuous in
our example.

An alternative way to interpret the failure of the constructed
example is that the labeling functions (or conditional dis-
tributions in the stochastic setting) of source and target
domains are far away from each other in the representation
space. Specifically, in the induced representation space, the
optimal labeling function on the source and target domains
are:

f
0

S
(x) =

(
0, x  1/2

1, x > 1/2
, f

0

T
(x) =

(
0, x > 1/2

1, x  1/2
,

and we have ||f
0

S
� f

0

T
||1 = Ex⇠U(0,1)[|f

0

S
(x)� f

0

T
(x)|] =

1.

4.2. A Generalization Upper Bound

For most of the practical hypothesis spaces H, e.g., half
spaces, it is usually intractable to compute the optimal joint
error �

⇤ from Theorem 2.1. Furthermore, the fact that �
⇤

contains errors from both domains makes the bound very
conservative and loose in many cases. In this section, in-
spired by the constructed example from Sec. 4.1, we aim
to provide a general, intuitive, and interpretable generaliza-
tion upper bound for domain adaptation that is free of the
pessimistic �

⇤ term. Ideally, the bound should also explic-
itly characterize how the shift between labeling functions
of both domains affects domain adaptation. Due to space
constraints, we refer the interested reader to the Appendix
for the proofs of our technical lemmas, and mainly focus in
the following on interpretations and results.

Because of its flexibility in choosing the witness function
class H and its natural interpretation as adversarial binary

classification, we still adopt the H-divergence to measure
the discrepancy between two distributions. For any hypoth-
esis space H, it can be readily verified that dH(·, ·) satisfies
the triangular inequality:

dH(D, D
0)  dH(D, D

00) + dH(D00
, D

0),

where D, D
0
, D

00 are any distributions over the same space.
We now introduce a technical lemma that will be helpful in
proving results related to the H-divergence:
Lemma 4.1. Let H ✓ [0, 1]X and D, D

0 be two distribu-
tions over X . Then 8h, h

0
2 H, |"D(h, h

0) � "D0(h, h
0)| 

d
H̃

(D, D
0), where H̃ := {sgn(|h(x)�h

0(x)|� t) | h, h
0
2

H, 0  t  1}.

As a matter of fact, the above lemma also holds for any
function class H (not necessarily a hypothesis space) where
there exists a constant M > 0, such that ||h||1  M for all
h 2 H. Another useful lemma is the following triangular
inequality:
Lemma 4.2. Let H ✓ [0, 1]X and D be any distribution
over X . For any h, h

0
, h

00
2 H, we have "D(h, h

0) 

"D(h, h
00) + "D(h00

, h
0).

Let fS : X ! [0, 1] and fT : X ! [0, 1] be the optimal
labeling functions on the source and target domains, respec-
tively. In the stochastic setting, fS(x) = PrS(y = 1 | x)
corresponds to the optimal Bayes classifier. With these
notations, the following theorem holds:
Theorem 4.1. Let hDS , fSi and hDT , fT i be the source
and target domains, respectively. For any function class
H ✓ [0, 1]X , and 8h 2 H, the following inequality holds:

"T (h)  "S(h) + d
H̃

(DS , DT )

+ min{EDS [|fS � fT |], EDT [|fS � fT |]}.

Remark The three terms in the upper bound have natural
interpretations: the first term is the source error, the second
one corresponds to the discrepancy between the marginal
distributions, and the third measures the distance between
the labeling functions from the source and target domains.
Altogether, they form a sufficient condition for the success
of domain adaptation: besides a small source error, not only
do the marginal distributions need to be close, but so do the
labeling functions.

Comparison with Theorem 2.1. It is instructive to com-
pare the bound in Theorem 4.1 with the one in Theo-
rem 2.1. The main difference lies in the �

⇤ in Theo-
rem 2.1 and the min{EDS [|fS � fT |], EDT [|fS � fT |]}
in Theorem 4.1. �

⇤ depends on the choice of the hy-
pothesis class H, while our term does not. In fact, our
quantity reflects the underlying structure of the problem,
i.e., the conditional shift. Finally, consider the example
given in the left panel of Fig. 1. It is easy to verify that
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we have min{EDS [|fS � fT |], EDT [|fS � fT |]} = 1/2
in this case, while for a natural class of hypotheses, i.e.,
H := {h(x) = 0 , a  x  b | a < b}, we have
�

⇤ = 1. In that case, our bound is tighter than the one in
Theorem 2.1.

In the covariate shift setting, where we assume the condi-
tional distributions of Y | X between the source and target
domains are the same, the third term in the upper bound
vanishes. In that case the above theorem says that to guar-
antee successful domain adaptation, it suffices to match the
marginal distributions while achieving small error on the
source domain. In general settings where the optimal label-
ing functions of the source and target domains differ, the
above bound says that it is not sufficient to simply match the
marginal distributions and achieve small error on the source
domain. At the same time, we should also guarantee that the
optimal labeling functions (or the conditional distributions
of both domains) are not too far away from each other. As
a side note, it is easy to see that EDS [|fS � fT |] = "S(fT )
and EDT [|fS � fT |] = "T (fS). In other words, they are
essentially the cross-domain errors. When the cross-domain
error is small, it implies that the optimal source (resp. tar-
get) labeling function generalizes well on the target (resp.
source) domain.

Both the error term "S(h) and the divergence d
H̃

(DS , DT )
in Theorem 4.1 are with respect to the true underlying dis-
tributions DS and DT , which are not available to us during
training. In the following, we shall use the Rademacher com-
plexity to provide for both terms a data-dependent bound
from empirical samples from DS and DT .
Definition 4.1 (Empirical Rademacher Complexity). Let
H be a family of functions mapping from X to [a, b] and
S = {xi}

n

i=1 a fixed sample of size n with elements in
X . Then, the empirical Rademacher complexity of H with
respect to the sample X is defined as

RadS(H) := E���


sup
h2H

1

n

nX

i=1

�ih(xi)

�
,

where ��� = {�i}
n

i=1 and �i are i.i.d. uniform random vari-
ables taking values in {+1, �1}.

With the empirical Rademacher complexity, we can show
that w.h.p., the empirical source error b"S(h) cannot be too
far away from the population error "S(h) for all h 2 H:
Lemma 4.3. Let H ✓ [0, 1]X , then for all � > 0, w.p. at
least 1 � �, the following inequality holds for all h 2 H:
"S(h)  b"S(h) + 2RadS(H) + 3

p
log(2/�)/2n.

Similarly, for any distribution D over X , let bD be its empiri-
cal distribution from sample S ⇠ D

n of size n. Then for any
two distributions D and D

0, we can also use the empirical
Rademacher complexity to provide a data-dependent bound
for the perturbation between dH(D, D

0) and dH( bD, bD0):

Lemma 4.4. Let H̃, D and bD be defined above, then for
all � > 0, w.p. at least 1 � �, the following inequality
holds for all h 2 H̃: ED[Ih]  E bD[Ih] + 2RadS(H̃) +

3
p

log(2/�)/2n.

Since H̃ is a hypothesis class, by definition we have:

d
H̃

(D, bD) = sup
A2A

H̃

| Pr
D

(A) � Pr
bD

(A)|

= sup
h2H̃

|ED[Ih] � E bD[Ih]|.

Hence combining the above identity with Lemma 4.4, we
immediately have w.p. at least 1 � �:

d
H̃

(D, bD)  2RadS(H̃) + 3
p

log(2/�)/2n. (2)

Now use a union bound and the fact that d
H̃

(·, ·) satisfies
the triangle inequality, we have:
Lemma 4.5. Let H̃, D, D

0 and bD, bD0 be defined above,
then for 8� > 0, w.p. at least 1 � �, for 8h 2 H̃:

d
H̃

(D, D
0)  d

H̃
( bD, bD0)+ 4RadS(H̃)+ 6

p
log(4/�)/2n.

Combine Lemma 4.3, Lemma 4.5 and Theorem 4.1 with a
union bound argument, we get the following main theorem
that characterizes an upper bound for domain adaptation:
Theorem 4.2. Let hDS , fSi and hDT , fT i be the source and
target domains, and let bDS , bDT be the empirical source and
target distributions constructed from sample S = {SS ,ST },
each of size n. Then for any H ✓ [0, 1]X and 8h 2 H:

"T (h)  b"S(h) + d
H̃

( bDS , bDT ) + 2RadS(H) + 4RadS(H̃)

+ min{EDS [|fS � fT |], EDT [|fS � fT |]}

+ O

⇣p
log(1/�)/n

⌘
,

where H̃ := {sgn(|h(x)�h
0(x)|�t)|h, h

0
2 H, t 2 [0, 1]}.

Essentially, the generalization upper bound can be decom-
posed into three parts: the first part comes from the domain
adaptation setting, including the empirical source error, the
empirical H-divergence, and the shift between labeling func-
tions. The second part corresponds to complexity measures
of our hypothesis space H and H̃, and the last part describes
the error caused by finite samples.

4.3. An Information-Theoretic Lower Bound

In Sec. 4.1, we constructed an example to demonstrate that
learning invariant representations could lead to a feature
space where the joint error on both domains is large. In this
section, we extend the example by showing that a similar
result holds in more general settings. Specifically, we shall
prove that for any approach based on learning invariant rep-
resentations, there is an intrinsic lower bound on the joint
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error of source and target domains, due to the discrepancy
between their marginal label distributions. Our result hence
highlights the need to take into account task related infor-
mation when designing domain adaptation algorithms based
on learning invariant representations.

Before we proceed to the lower bound, we first define several
information-theoretic concepts that will be used in the anal-
ysis. For two distributions D and D

0, the Jensen-Shannon
(JS) divergence DJS(D || D

0) is defined as:

DJS(D || D
0) :=

1

2
DKL(D || DM ) +

1

2
DKL(D0

|| DM ),

where DKL(· || ·) is the Kullback–Leibler (KL) divergence
and DM := (D + D

0)/2. The JS divergence can be viewed
as a symmetrized and smoothed version of the KL diver-
gence, and it is closely related to the L1 distance between
two distributions through Lin’s lemma (Lin, 1991).

Unlike the KL divergence, the JS divergence is bounded:
0  DJS(D || D

0)  1. Additionally, from the JS di-
vergence, we can define a distance metric between two
distributions as well, known as the JS distance (Endres &
Schindelin, 2003):

dJS(D, D
0) :=

p
DJS(D || D0).

With respect to the JS distance and for any (stochastic)
mapping h : Z 7! Y , we can prove the following lemma
via the celebrated data processing inequality:
Lemma 4.6. Let D

Z

S
and D

Z

T
be two distributions over Z

and let D
Y

S
and D

Y

T
be the induced distributions over Y by

function h : Z 7! Y , then

dJS(D
Y

S
, D

Y

T
)  dJS(D

Z

S
, D

Z

T
). (3)

For methods that aim to learn invariant representations for
domain adaptation, an intermediate representation space Z

is found through feature transformation g, based on which
a common hypothesis h : Z 7! Y is shared between both
domains (Ganin et al., 2016; Tzeng et al., 2017; Zhao et al.,
2018b). Through this process, the following Markov chain
holds:

X
g

�! Z
h

�! Ŷ , (4)
where Ŷ = h(g(X)) is the predicted random variable
of interest. Hence for any distribution D over X , this
Markov chain also induces a distribution D

Z over Z and
D

Ŷ over Y . By Lemma 4.6, we know that dJS(DŶ

S
, D

Ŷ

T
) 

dJS(DZ

S
, D

Z

T
). With these notations, noting that the JS dis-

tance is a metric, the following inequality holds:

dJS(D
Y

S
, D

Y

T
)  dJS(D

Y

S
, D

Ŷ

S
)+dJS(D

Ŷ

S
, D

Ŷ

T
)+dJS(D

Ŷ

T
, D

Y

T
).

Combining the above inequality with Lemma 4.6, we imme-
diately have:

dJS(D
Y

S
, D

Y

T
)  dJS(D

Z

S
, D

Z

T
)

+ dJS(D
Y

S
, D

Ŷ

S
) + dJS(D

Y

T
, D

Ŷ

T
). (5)

Intuitively, dJS(DY

S
, D

Ŷ

S
) and dJS(DY

T
, D

Ŷ

T
) measure the

distance between the predicted label distribution and the
ground truth label distribution on the source and target do-
main, respectively. Formally, the following result estab-
lishes a relationship between dJS(DY

, D
Ŷ ) and the accuracy

of the prediction function h:
Lemma 4.7. Let Y = f(X) 2 {0, 1} where f(·) is the
labeling function and Ŷ = h(g(X)) 2 {0, 1} be the predic-
tion function, then dJS(DY

, D
Ŷ ) 

p
"(h � g).

We are now ready to present the key lemma of the section:

Lemma 4.8. Suppose the Markov chain X
g

�! Z
h

�! Ŷ

holds, then

dJS(D
Y

S
, D

Y

T
)  dJS(D

Z

S
, D

Z

T
) +

p
"S(h � g) +

p
"T (h � g).

Remark This lemma shows that if the marginal label dis-
tributions are significantly different between the source and
target domains, then in order to achieve a small joint error,
the induced distributions over Z from source and target do-
mains have to be significantly different as well. Put another
way, if we are able to find an invariant representation such
that dJS(DZ

S
, D

Z

T
) = 0, then the joint error of the composi-

tion function h � g has to be large:
Theorem 4.3. Suppose the condition in Lemma 4.8 holds
and dJS(DY

S
, D

Y

T
) � dJS(DZ

S
, D

Z

T
), then:

"S(h�g)+"T (h�g) �
1

2

�
dJS(D

Y

S
, D

Y

T
) � dJS(D

Z

S
, D

Z

T
)
�2

.

Remark The lower bound gives us a necessary condition
on the success of any domain adaptation approach based
on learning invariant representations: if the marginal la-
bel distributions are significantly different between source
and target domains, then minimizing dJS(DZ

S
, D

Z

T
) and the

source error "S(h � g) will only increase the target error.
In fact, Theorem 4.3 can be extended to hold in the set-
ting where different transformation functions are applied in
source and target domains:
Corollary 4.1. Let gS , gT be the source and target transfor-
mation functions from X to Z . Suppose the condition in
Lemma 4.8 holds and dJS(DY

S
, D

Y

T
) � dJS(DZ

S
, D

Z

T
), then:

"S(h�gS)+"T (h�gT ) �
1

2

�
dJS(D

Y

S
, D

Y

T
) � dJS(D

Z

S
, D

Z

T
)
�2

.

Recent work has also explored using different transforma-
tion functions to achieve invariant representations (Bous-
malis et al., 2016; Tzeng et al., 2017), but Corollary 4.1
shows that this is not going to help if the marginal label
distributions differ between two domains.

We conclude this section by noting that our bound on the
joint error of both domains is not necessarily the tightest
one. This can be seen from the example in Sec. 4.1, where
dJS(DZ

S
, D

Z

T
) = dJS(DY

S
, D

Y

T
) = 0, and we have "S(h�g)+



On Learning Invariant Representations for Domain Adaptation

(a) USPS ! MNIST (b) USPS ! SVHN (c) SVHN ! MNIST (d) SVHN ! USPS

Figure 2. Digit classification on MNIST, USPS and SVHN. The horizontal solid line corresponds to the target domain test accuracy
without adaptation. The green solid line is the target domain test accuracy under domain adaptation with DANN. We also plot the least
square fit (dashed line) of the DANN adaptation results to emphasize the negative slope.

"T (h�g) = 1, but in this case our result gives a trivial lower
bound of 0. Nevertheless, our result still sheds new light
on the importance of matching marginal label distributions
in learning invariant representation for domain adaptation,
which we believe to be a promising direction for the design
of better adaptation algorithms.

5. Experiments
Our theoretical results on the lower bound of the joint error
imply that over-training the feature transformation function
and the discriminator may hurt generalization on the target
domain. In this section, we conduct experiments on real-
world datasets to verify our theoretical findings. The task is
digit classification on three datasets of 10 classes: MNIST,
USPS and SVHN. MNIST contains 60,000/10,000 train/test
instances; USPS contains 7,291/2,007 train/test instances,
and SVHN contains 73,257/26,032 train/test instances. We
show the label distribution of these three datasets in Fig. 3.

Figure 3. The label distributions of MNIST, USPS and SVHN.

Before training, we preprocess all the samples into gray
scale single-channel images of size 16 ⇥ 16, so they can be
used by the same network. In our experiments, to ensure a
fair comparison, we use the same network structure for all
the experiments: 2 convolutional layers, one fully connected
hidden layer, followed by a softmax output layer with 10
units. The convolution kernels in both layers are of size 5⇥5,
with 10 and 20 channels, respectively. The hidden layer
has 1280 units connected to 100 units before classification.
For domain adaptation, we use the original DANN (Ganin
et al., 2016) with gradient reversal implementation. The

discriminator in DANN takes the output of convolutional
layers as its feature input, followed by a 500 ⇥ 100 fully
connected layer, and a one-unit binary classification output.

We plot four adaptation trajectories in Fig. 2. Among the
four adaptation tasks, we can observe two phases in the
adaptation accuracy. In the first phase, the test set accu-
racy rapidly grows, in less than 10 iterations. In the second
phase, it gradually decreases after reaching its peak, despite
the fact that the source training accuracy keeps increasing
smoothly. Those phase transitions can be verified from
the negative slopes of the least squares fit of the adapta-
tion curves (dashed lines in Fig. 2). We observe similar
phenomenons on additional experiments using artificially
unbalanced datasets trained on more powerful networks
in Appendix C. The above experimental results imply that
over-training the feature transformation and discriminator
does not help generalization on the target domain, but can
instead hurt it when the label distributions differ (as shown
in Fig. 3). These experimental results are consistent with
our theoretical findings.

6. Conclusion and Future Work
In this paper we theoretically and empirically study the im-
portant problem of learning invariant representations for
domain adaptation. We show that learning an invariant rep-
resentation and achieving a small source error is not enough
to guarantee target generalization. We then prove both up-
per and lower bounds for the target and joint errors, which
directly translate to sufficient and necessary conditions for
the success of adaptation. We believe our results take an im-
portant step towards understanding deep domain adaptation,
and also stimulate future work on the design of stronger
deep domain adaptation algorithms that align conditional
distributions. Another interesting direction for future work
is to characterize what properties the feature transformation
function should have in order to decrease the conditional
shift. It is also worth investigating under which conditions
the label distributions can be aligned without explicit labeled
data from the target domain.
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