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Sum-Product Networks
Definition

A Sum-Product Network (SPN) is a

I Rooted directed acyclic graph of univariate distributions, sum
nodes and product nodes.

I Value of a product node is the product of its children.

I Value of a sum node is the weighted sum of its children,
where the weights are nonnegative.

I Value of the network is the value at the root.
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Sum-Product Networks
Mixture of Trees

Each SPN can be decomposed as a mixture of trees:
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I Each tree is a product of univariate distributions.

I Number of mixture components is Ω(2Depth).

I Each network computes a positive polynomial (posynomial)
function of model parameters:

Vroot(x | w) =

τS∑
t=1

∏
(k,j)∈TtE

wkj

n∏
i=1

pt(Xi = xi )
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Sum-Product Networks
Bayesian Network

Alternatively, each SPN S is equivalent to a Bayesian network B
with bipartite structure.
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I Number of sum nodes in S = Number of hidden variables in
B = Θ(|S|). |B| = O(n|S|)

I Number of observable variables in B = Number of variables
modeled by S.

I Typically number of hidden variables � number of observable
variables.
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Variational Inference
Brief Introduction

Bayesian Inference:

p(w | x)︸ ︷︷ ︸
posterior

∝ p(w)︸ ︷︷ ︸
prior

p(x | w)︸ ︷︷ ︸
likelihood

Often intractable because of:

I No analytical solution.

I Expensive numerical integration.

General idea: find the best approximation in a tractable family of
distributions Q:

minimizeq∈Q KL[q(w) || p(w | x)]

Typical choice of approximation families: Mean-field, structured
mean-field, etc.
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Variational Inference
Brief Introduction

Variational method: Optimization-based, deterministic approach
for approximate Bayesian inference.

inf
q∈Q

KL[q(w) || p(w | x)]⇔ sup
q∈Q

Eq[log p(w, x)] + H[q]

Evidence Lower Bound L̂:

log p(x) ≥ sup
q∈Q

Eq[log p(w, x)] + H[q] =: L̂
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Collapsed Variational Inference
Motivations and Challenges

Bayesian inference algorithms for SPNs:

I Flexible at incorporating prior knowledge about the structure
of SPNs.

I More robust to overfitting.
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Collapsed Variational Inference
Motivations and Challenges

W1 W2 W3 · · · Wm

H1 H2 H3 · · · Hm

X1 X2 X3 · · · Xn

D

I W – Model parameters,
global hidden variables.

I H – Assignments of sum
nodes, local hidden
variables.

I X – Observable variables.

I D – Number of instances.

Challenges for standard VB:

I Large number of local hidden variables: number of local
hidden variables = Number of sum nodes = Θ(|S|).

I Memory overhead: space complexity O(D|S|).

I Time complexity: O(nD|S|).
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Collapsed Variational Inference
Contributions

Our contributions:

I We obtain better ELBO L to optimize than L̂, the one
obtained by mean-field.

I Reduced space complexity: O(D|S|)⇒ O(|S|), space
complexity is independent of training size.

I Reduced time complexity: O(nD|S|)⇒ O(D|S|), removing
the explicit dependency on the dimension.
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Collapsed Variational Inference
Efficient Marginalization

Recall ELBO in standard VI:

L̂ := Eq(w,h)[log p(w,h, x)] + H[q(w,h)]

Consider the new ELBO in Collapsed VI:

L :=Eq(w)[log p(w, x)] + H[q(w)]

=Eq(w)[log
∑
h

p(w,h, x)] + H[q(w)]

We can establish the following inequality:

log p(x) ≥ L ≥ L̂

The new ELBO in Collapsed VI leads to a better lower bound than
the one used in standard VI!
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Collapsed Variational Inference
Comparisons

Standard Variational Inference
Mean-field assumption: q(w,h) =

∏
i q(wi )

∏
j q(hj)

ELBO: L̂ := Eq(w,h)[log p(w,h, x)] + H[q(w,h)]

Collapsed Variational Inference for LDA, HDP

Collapsed out global hidden variables: q(h) =
∫
w q(w,h) dw

ELBO: Lh := Eq(h)[log p(h, x)] + H[q(h)]

Better lower bound: Lh ≥ L̂

Collapsed Variational Inference for SPN

Collapsed out local hidden variables: q(w) =
∑

h q(w,h)
ELBO: Lw := Eq(w)[log p(w, x)] + H[q(w)]

Better lower bound: Lw ≥ L̂
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Collapsed Variational Inference
Efficient Marginalization

Time complexity of the exact marginalization incurred in
computing

∑
h p(w,h, x):

I Time complexity of marginalization in graphical model G:
O(D · 2tw(G)).

I Exact marginalization in BN B with algebraic decision
diagram as local factors: O(D|B|) = O(nD|S|).

I Exact marginalization in SPN S: O(D|S|).

Space complexity reduction:

I No posterior over h to approximate anymore.

I No variational variables over h needed: O(D|S|)⇒ O(|S|).

15 / 26



Collapsed Variational Inference
Efficient Marginalization

Time complexity of the exact marginalization incurred in
computing

∑
h p(w,h, x):

I Time complexity of marginalization in graphical model G:
O(D · 2tw(G)).

I Exact marginalization in BN B with algebraic decision
diagram as local factors: O(D|B|) = O(nD|S|).

I Exact marginalization in SPN S: O(D|S|).

Space complexity reduction:

I No posterior over h to approximate anymore.

I No variational variables over h needed: O(D|S|)⇒ O(|S|).

16 / 26



Collapsed Variational Inference
Efficient Marginalization

Time complexity of the exact marginalization incurred in
computing

∑
h p(w,h, x):

I Time complexity of marginalization in graphical model G:
O(D · 2tw(G)).

I Exact marginalization in BN B with algebraic decision
diagram as local factors: O(D|B|) = O(nD|S|).

I Exact marginalization in SPN S: O(D|S|).

Space complexity reduction:

I No posterior over h to approximate anymore.

I No variational variables over h needed: O(D|S|)⇒ O(|S|).

17 / 26



Collapsed Variational Inference
Efficient Marginalization

Time complexity of the exact marginalization incurred in
computing

∑
h p(w,h, x):

I Time complexity of marginalization in graphical model G:
O(D · 2tw(G)).

I Exact marginalization in BN B with algebraic decision
diagram as local factors: O(D|B|) = O(nD|S|).

I Exact marginalization in SPN S: O(D|S|).

Space complexity reduction:

I No posterior over h to approximate anymore.

I No variational variables over h needed: O(D|S|)⇒ O(|S|).

18 / 26



Collapsed Variational Inference
Efficient Marginalization

Time complexity of the exact marginalization incurred in
computing

∑
h p(w,h, x):

I Time complexity of marginalization in graphical model G:
O(D · 2tw(G)).

I Exact marginalization in BN B with algebraic decision
diagram as local factors: O(D|B|) = O(nD|S|).

I Exact marginalization in SPN S: O(D|S|).

Space complexity reduction:

I No posterior over h to approximate anymore.

I No variational variables over h needed: O(D|S|)⇒ O(|S|).

19 / 26



Collapsed Variational Inference
Logarithmic Transformation

New optimization objective:

maximizeq∈Q Eq(w)[log
∑
h

p(w,h, x)] + H[q(w)]

which is equivalent to

minimizeq∈Q KL[q(w) || p(w)]− Eq(w)[log p(x | w)]

I p(w) – prior distribution over w, product of Dirichlets.

I q(w) – variational posterior over w, product of Dirichlets.

I p(x | w) – likelihood, not multinomial anymore after
marginalization.

Non-conjugate q(w) and p(x | w), no analytical solution for
Eq(w)[log p(x | w)].
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Collapsed Variational Inference
Logarithmic Transformation

Key observation:

p(x | w) = Vroot(x | w) =

τS∑
t=1

∏
(k,j)∈TtE

wkj

n∏
i=1

pt(Xi = xi )

is a posynomial function of w.
Make a bijective mapping (change of variable): w′ = log(w).

I Dates back to the literature of geometric programming.

I The new objective after transformation is convex in w′.

log p(x | w) = log

 τS∑
t=1

exp

ct +
∑

(k,j)∈TtE

w ′
kj


Jensen’s inequality to obtain further lower bound.
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Collapsed Variational Inference
Logarithmic Transformation

Further lower bound:

Eq(w)[log p(x | w)] = Eq(w′)[log p(x | w′)] ≥ log p(x | Eq′(w′)[w′])

Relaxed objective:

minimizeq∈Q KL[q(w) || p(w)]︸ ︷︷ ︸
Regularity

− log p(x | Eq′(w′)[w′])︸ ︷︷ ︸
Data fitting

Roughly, log p(x | Eq′(w′)[w′]) corresponds the log-likelihood by
setting the weights of SPN as the posterior mean of q(w).

Optimized by projected GD.
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Collapsed Variational Inference
Algorithm

I Line 4 – 8 easily parallelizable, distributed version.

I Sample minibatch in Line 4 – 8, stochastic version.
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Experiments

I Experiments on 20 data sets, report average log-likelihoods,
Wilcoxon ranked test.

I Compared with (O)MLE-SPN and OBMM-SPN.

400 350 300 250 200 150 100 50 0
MLE-Projected GD

400

350

300

250

200

150

100

50

0

C
V

B
-P

ro
je

ct
e
d
 G

D

MLE-SPN vs CVB-SPN, Avg. log-likelihoods

800 700 600 500 400 300 200 100 0
OMLE-Projected GD

800

700

600

500

400

300

200

100

0

O
C

V
B

-P
ro

je
ct

e
d
 G

D

OMLE-SPN vs OCVB-SPN, Avg. log-likelihoods

24 / 26



Experiments
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Summary

Thanks

Q & A
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