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Sum-Product Networks
Definition
A Sum-Product Network (SPN) is a
» Rooted directed acyclic graph of univariate distributions, sum
nodes and product nodes.
» Value of a product node is the product of its children.
» Value of a sum node is the weighted sum of its children,
where the weights are nonnegative.
» Value of the network is the value at the root.
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Sum-Product Networks

Mixture of Trees

Each SPN can be decomposed as a mixture of trees:

» Each tree is a product of univariate distributions.
» Number of mixture components is Q(2P¢Pth).

» Each network computes a positive polynomial (posynomial)
function of model parameters:

Vroot X | W Z H Wij H pt

t=1 (kJj)ETee i=1
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Sum-Product Networks

Bayesian Network
Alternatively, each SPN S is equivalent to a Bayesian network B
with bipartite structure.

» Number of sum nodes in S = Number of hidden variables in
B =0(S|). |B] = O(n|S])

» Number of observable variables in B = Number of variables

modeled by S.
» Typically number of hidden variables > number of observable
variables. Carnegie Mellon University
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Variational Inference

Brief Introduction

Bayesian Inference:

p(w | x) oc p(w) p(x | w)
N—_——

——
posterior prior  likelihood

Often intractable because of:
» No analytical solution.
» Expensive numerical integration.

General idea: find the best approximation in a tractable family of
distributions Q:

minimizegeq  KL[g(w) || p(w | x)]

Typical choice of approximation families: Mean-field, structured
mean-field, etc. Carnegie Mellon University
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Variational Inference

Brief Introduction

Variational method: Optimization-based, deterministic approach
for approximate Bayesian inference.

inf KL[a(w) [| p(w | x)] < sup Eq[log p(w, x)] + H]d]
q¢< qeQ

Evidence Lower Bound L:

log p(x) > sugEq[Iog p(w,x)] + H[q] =: £
q€
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Collapsed Variational Inference

Motivations and Challenges

Bayesian inference algorithms for SPNs:

> Flexible at incorporating prior knowledge about the structure
of SPNs.

» More robust to overfitting.
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Collapsed Variational Inference

Motivations and Challenges

» W — Model parameters,
global hidden variables.

» H — Assignments of sum
nodes, local hidden
variables.

» X — Observable variables.

» D — Number of instances.

Challenges for standard VB:

> Large number of local hidden variables: number of local
hidden variables = Number of sum nodes = ©(|S]).
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Collapsed Variational Inference

Motivations and Challenges

v

W — Model parameters,
global hidden variables.

» H — Assignments of sum
nodes, local hidden
variables.

» X — Observable variables.

» D — Number of instances.

Challenges for standard VB:

> Large number of local hidden variables: number of local
hidden variables = Number of sum nodes = ©(|S]).

» Memory overhead: space complexity O(D|S|).
» Time complexity: O(nD|S]).
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Collapsed Variational Inference

Contributions

Our contributions:

» We obtain better ELBO L to optimize than L, the one
obtained by mean-field.

» Reduced space complexity: O(D|S|) = O(|S]), space
complexity is independent of training size.

» Reduced time complexity: O(nD|S|) = O(D|S|), removing
the explicit dependency on the dimension.

Carnegie Mellon University
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Collapsed Variational Inference

Efficient Marginalization

Recall ELBO in standard VI:

L = Eqqumllog p(w, h,x)] + Hlg(w, h)]
Consider the new ELBO in Collapsed VI:
L ::Eq(w) [|Og P(W, X)] + H[q(w)]
:Eq(w) [|Og Z p(W, h, X)] + H[q(w)]
h

We can establish the following inequality:
log p(x) > L > L

The new ELBO in Collapsed VI leads to a better lower bound than

i | . . e
the one used in standard VI! Carnegie Mellon University
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Collapsed Variational Inference

Comparisons

Standard Variational Inference
Mean-field assumption: q(w, h) = [[; q(w;) []; a(h))
ELBO: L := Eq(y.nllog p(w, h,x)] + H[g(w, h)]

Collapsed Variational Inference for LDA, HDP

Collapsed out global hidden variables: g(h) = [ g(w,h) dw
Better lower bound: L, > L

Collapsed Variational Inference for SPN
Collapsed out local hidden variables: g(w) =", g(w, h)
ELBO: Ly = Egw)[log p(wA,x)] + H[g(w)]
Better lower bound: Ly, > L
Carnegie Mellon University
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Collapsed Variational Inference

Efficient Marginalization

Time complexity of the exact marginalization incurred in
computing >, p(w, h, x):
» Time complexity of marginalization in graphical model G:
O(D - 2t(9)).

Space complexity reduction:

Carnegie Mellon University
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Collapsed Variational Inference

Efficient Marginalization

Time complexity of the exact marginalization incurred in
computing >, p(w, h, x):

» Time complexity of marginalization in graphical model G:
O(D - 2t(9)).

» Exact marginalization in BN B with algebraic decision
diagram as local factors: O(D|B|) = O(nD|S]).

» Exact marginalization in SPN S: O(D|S]).

Space complexity reduction:
» No posterior over h to approximate anymore.
» No variational variables over h needed: O(D|S]|) = O(|S|).
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Collapsed Variational Inference

Logarithmic Transformation

New optimization objective:

maximizegeq  Eqw)[log Z p(w, h,x)] + H[g(w)]
h

which is equivalent to

minimizeqeq  KL[g(w) || p(w)] — Eqw)[log p(x | w)]

» p(w) — prior distribution over w, product of Dirichlets.
> q

(w) — variational posterior over w, product of Dirichlets.
» p(x | w) — likelihood, not multinomial anymore after
marginalization.
Non-conjugate g(w) and p(x | w), no analytical solution for
IEq(w)[log p(x | w)l.
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Collapsed Variational Inference

Logarithmic Transformation

Key observation:

p(x | w) = Vigot(x | w) Z H Wi Hpt

t=1(kj)€Te  i=1

is a posynomial function of w.
Make a bijective mapping (change of variable): w’ = log(w).

» Dates back to the literature of geometric programming.

» The new objective after transformation is convex in w’.

log p(x | w) = log Zexp ct + Z wa

(kJj)ET:E

Jensen's inequality to obtain further lower bound.
Carnegie Mellon University
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Collapsed Variational Inference

Logarithmic Transformation

Further lower bound:
Eqqwyllog p(x | w)] = Eqw)llog p(x | w')] > log p(x | Eq/wr)[w'])
Relaxed objective:

minimizeseq  KL[g(w) || p(w)] —log p(x | Eq/(w)[w'])

Regularity Data fitting

Roughly, log p(x | Eg/(wy[w']) corresponds the log-likelihood by
setting the weights of SPN as the posterior mean of g(w).

Optimized by projected GD.

Carnegie Mellon University
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Collapsed Variational Inference
Algorithm

Algorithm 1 CVB-SPN

Input: Initial B, prior hyperparameter ¢, training in-
stances {x4}2_,.

Output: Locally optimal 8*.

1: while not converged do

2:  Update w = exp(E (w|g)[w’]) with Eq. 10.

3 SetVg=0.

4: ford=1toDdo

5 Bottom-up evaluation of log p(x4|w).

6: Top-down differentiation of % log p(x4|w).
7 Update Vg based on x4.

8: end for

9:  Update Vg based on KL(g(w|B8) || p(w|a)).
10:  Update B with projected GD.
11: end while

> Line 4 — 8 easily parallelizable, distributed version.

» Sample minibatch in Line 4 — 8, stochastic version.
Carnegie Mellon University
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Experiments

» Experiments on 20 data sets, report average log-likelihoods,
Wilcoxon ranked test.

» Compared with (O)MLE-SPN and OBMM-SPN.

MLE-SPN vs CVB-SPN, Avg. log-likelihoods

0,

OMLE-SPN vs OCVB-SPN, Avg. log-likelihoods
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Experiments

OBMM vs OCVB, Avg. log-likelihoods
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Summary

Thanks
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