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Introduction

• Sum-Product Networks (SPNs) are probabilistic inference machines that
admit exact inference in linear time in the size of the network.

• We develop a deterministic collapsed variational inference algorithm for
SPNs that is both computationally and statistically efficient.

• The proposed algorithm can be easily adapted to stochastic and
distributed settings.

• The proposed algorithm has a linear reduction in both time and space
complexity compared with standard variational inference algorithm.

Background
Sum-Product Networks (SPNs):

• Rooted directed acyclic graph of univariate distributions, sum nodes and
product nodes.

• Value of a product node is the product of its children.
• Value of a sum node is the weighted sum of its children, where the
weights are nonnegative.

• Value of the network is the value at the root.

Recursive computation of the network:

Vk(x | w) =


p(Xi = xi) k is a leaf node over Xi∏
j∈Ch(k) Vj(x | w) k is a product node∑
j∈Ch(k)wkjVj(x | w) k is a sum node

SPNs as Mixture of Trees:
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Let τS = Vroot(1|1).

f (w) , Vroot(x|w) =
τS∑
t=1

∏
(k,j)∈TtE

wkj
n∏
i=1
pt(Xi = xi)

is a posynomial function of w.

Equivalent Bayesian Networks:
Each SPN S is equivalent to a Bayesian network B with bipartite structure.

W1 W2 W3 · · · Wm

H1 H2 H3 · · · Hm

X1 X2 X3 · · · Xn

D

• Number of observable variables in B = Number of variables in S.
• Number of sum nodes in S = Number of hidden variables in B = Θ(|S|).
|B| = O(n|S|).

• Typically number of hidden variables� number of observable
variables, i.e., m� n.

•Hj are local hidden variables. Wj are global hidden variables.

Collapsed Variational Inference
Prior distribution over model parameters: p(w|ααα) = ∏m

k=1 p(wk|αk) =∏m
k=1 Dir(wk|αk). Exact posterior in computationally intractable:

p(w|{xd}Dd=1,ααα) ∝
m∏
k=1

Dir(wk|αk)
D∏
d=1

τS∑
t=1

∏
(k,j)∈TtE

wkj
n∏
i=1
pt(xdi)

Standard Variational Bayes Inference:
Mean Field assumption:

q(w,h) =
∏
i
q(wi)

∏
j
q(hj)

Evidence Lower BOund (ELBO):

L̂ := Eq(w,h)[log p(w,h,x)] + H[q(w,h)]

Collapsed Variational Bayes Inference:
Using exact conditional distribution q(h|w), leading to the new ELBO:

L := Eq(w)[log p(w,x)] + H[q(w)]
Equivalent to marginalizing out local hidden variables: q(w) = ∑

h q(w,h)
before approximating the true marginal posterior distribution.

• A better lower bound: log p(x|ααα) ≥ L ≥ L̂.
• Reduced space complexity: O(D|S|)⇒ O(|S|).
• Reduced time complexity: O(nD|S|)⇒ O(D|S|).
Variational optimization formulation:

minimizeq∈Q KL[q(w) || p(w)]− Eq(w)[log p(x | w)]
No closed form solution for Eq(w)[log p(x|w)] due to the non-conjugacy
between q(w) and p(x|w).
Logarithmic Transformation:
Bijective mapping (change of variable) w′ = log(w), leading to:

log p(x | w) = log
 τS∑
t=1

exp
ct +

∑
(k,j)∈TtE

w′kj




a convex function of w′. Apply Jensen’s inequality to obtain further lower
bound:

Eq(w)[log p(x | w)] = Eq(w′)[log p(x | w′)] ≥ log p(x | Eq′(w′)[w′])
Relaxed objective:

minimizeq∈Q KL[q(w) || p(w)]︸ ︷︷ ︸
Regularity

− log p(x | Eq′(w′)[w′])︸ ︷︷ ︸
Data fitting

Optimized by Projected gradient descent. Easily extended to stochastic and
distributed settings.

Experiments
Compared with (O)MLE-SPN, OBMM on 20 benchmark data sets. Mea-
suring average log-likelihoods on test data.
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Conclusion
• CVB-SPN maintains a variational posterior distribution over global
hidden variables by marginalizing out all the local hidden variables.

• CVB-SPN is both computationally and statistically efficient.


