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Introduction

- Sum-Product Networks (SPNs) are probabilistic inference machines that
admit exact inference 1n linear time 1n the size of the network.

* We develop a deterministic collapsed variational inference algorithm for
SPNs that 1s both computationally and statistically efficient.

- The proposed algorithm can be easily adapted to stochastic and
distributed settings.

- The proposed algorithm has a linear reduction 1n both time and space
complexity compared with standard variational inference algorithm.

Background
Sum-Product Networks (SPNs):

- Rooted directed acyclic graph of univariate distributions, sum nodes and
product nodes.

» Value of a product node 1s the product of its children.

» Value of a sum node 1s the weighted sum of its children, where the
welghts are nonnegative.

- Value of the network 1s the value at the root.

Recursive computation of the network:
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k 1s a leaf node over X;
Vi(x | w) k is a product node

k 1s a sum node

SPNs as Mixture of Trees:
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Let 75 = Vioo(1]1).

f(w) = Vioot(X|W) = Z I  wsy H (X,
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1S a posynomial function of w.
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Equivalent Bayesian Networks:

Each SPN S is equivalent to a Bayesian network 5 with bipartite structure.

- Number of observable variables in 5 = Number of variables in S.

B| = O(n|S)).
- Typically number of hidden variables > number of observable

variables, 1.e., m > n.
- H; are local hidden variables. WW; are global hidden variables.

- Number of sum nodes in S = Number of hidden variables in B = O(|S]|).

Collapsed Variational Inference

Prior distribution over model parameters: p(w|a) = I/, p(wr|lag) =
[17", Dir(wg|cay). Exact posterior in eomputationally intractable:

p(W{xa}iy, ) ox H Dir(wiJas) 113> 11 W Hpt(a:dz)
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Standard Variational Bayes Inference.
Mean Field assumption:

g(w,h) = [ q(w:) [T q(hy)
i J
Evidence Lower BOund (ELBO):
L = Eywmllog p(w, h,x)] + Hlg(w, h)]

Collapsed Variational Bayes Inference:
Using exact conditional distribution ¢(h|w), leading to the new ELBO:
L= Eypw)llog p(w, x)| + Hlg(w)]

Equivalent to marginalizing out local hidden variables: ¢(w) = >, g(w, h)
before approximating the true marginal posterior distribution.

- A better lower bound: log p(x|a) > L > L.
- Reduced space complexity: O(D|S|) = O(|S]).
- Reduced time complexity: O(nD|S|) = O(D|S]).

Variational optimization formulation:

p(W)] — Eqw)llog p(x | w)]
No closed form solution for E,log p(x|w)| due to the non-conjugacy
between ¢(w) and p(x|w).

minimize,co KL|g(W)

Logarithmic Transformation:
Bijective mapping (change of variable) w' = log(w), leading to:

log p(x | w) = log (ZeXp (Ct‘|‘ )3 wk]))
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a convex function of w’. Apply Jensen’s inequality to obtain further lower
bound:

4Jq(vv) [1ng(X | W)] —
Relaxed objective:

o whllog p(x | w')] > log p(x | Eywn[W'])

minimize,cq  KL[g(W) || p(w)] = log p(x | By [w'])

Data fitting
Optimized by Projected gradient descent. Easily extended to stochastic and

distributed settings.

Reglﬁarity

Experiments

Compared with (O)MLE-SPN, OBMM on 20 benchmark data sets. Mea-
suring average log likelihoods on test data.
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OBMM-Moment Matching

Conclusion

- CVB-SPN maintains a variational posterior distribution over global
hidden variables by marginalizing out all the local hidden variables.

- CVB-SPN 1s both computationally and statistically efficient.
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