
Collapsed Variational Inference for Sum-Product Networks

Han Zhao† HAN.ZHAO@CS.CMU.EDU
Tameem Adel§ T.M.A.A.HESHAM@UVA.NL
Geoff Gordon† GGORDON@CS.CMU.EDU
Brandon Amos† BAMOS@CS.CMU.EDU
†School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA
§Machine Learning Lab, University of Amsterdam, Amsterdam, the Netherlands; Radboud University

Abstract
Sum-Product Networks (SPNs) are probabilistic
inference machines that admit exact inference in
linear time in the size of the network. Exist-
ing parameter learning approaches for SPNs are
largely based on the maximum likelihood prin-
ciple and are subject to overfitting compared to
more Bayesian approaches. Exact Bayesian pos-
terior inference for SPNs is computationally in-
tractable. Even approximation techniques such
as standard variational inference and posterior
sampling for SPNs are computationally infeasi-
ble even for networks of moderate size due to
the large number of local latent variables per
instance. In this work, we propose a novel
deterministic collapsed variational inference al-
gorithm for SPNs that is computationally effi-
cient, easy to implement and at the same time
allows us to incorporate prior information into
the optimization formulation. Extensive exper-
iments show a significant improvement in accu-
racy compared with a maximum likelihood based
approach.

1. Introduction
Parameter learning is an important research problem in
Sum-Product Networks (SPNs) (Poon & Domingos, 2011;
Gens & Domingos, 2012). Due to recent progress, we
can locally maximize the likelihood of SPNs, but those ap-
proaches overfit for complex models because they do not
retain posterior uncertainty or allow flexible incorporation
of prior information. SPNs are essentially mixture models
with potentially exponentially many components (Zhao &
Poupart, 2015). Exact posterior inference for SPNs is com-

Proceedings of the 33 rd International Conference on Machine
Learning, New York, NY, USA, 2016. JMLR: W&CP volume
48. Copyright 2016 by the author(s).

putationally intractable due to the exponential growth of
the number of mixture components in the posterior distri-
bution. Approximate Bayesian inference for SPNs is chal-
lenging, mostly because of the vast number of local latent
variables and their intricate connections. Unlike traditional
mixture models, e.g., LDA (Blei et al., 2003), Gaussian
mixture models, etc., where the number of local latent vari-
ables is a small constant per observation, the number of
local latent variables in SPNs is linearly proportional to
the size of the network for each observable instance, of-
ten around thousands to millions. This property makes
standard approximate Bayesian inference approaches, in-
cluding mean-field variational inference (VI) (Wainwright
& Jordan, 2008) and posterior sampling (Casella & Berger,
2002), computationally infeasible even for SPNs with mod-
erate size. In SPNs, the memory overhead incurred by the
number of local variational parameters or the number of lo-
cal sampling points increases linearly with both the number
of data points, D, and the size of the network, |S|, and so
can easily become prohibitively large.

In this work we propose a collapsed variational inference
algorithm for SPNs that is robust to overfitting and can
be naturally extended into a stochastic variant to scale to
large data sets. We call our algorithm CVB-SPN. CVB-
SPN is a deterministic approximate Bayesian inference al-
gorithm that is computationally efficient and easy to im-
plement while at the same time allowing us to incorporate
prior information into the design. Like other variational
techniques, CVB-SPN is based on optimization. Unlike
other variational techniques, the number of parameters to
be optimized is only linear in the network size (O(|S|)) and
is independent of the size of the training set, as opposed to
O(D|S|) in ordinary VI. It is worth noting that, differ-
ent from traditional collapsed variational approaches in the
literature that marginalize out global latent variables (Teh
et al., 2006; 2007), here we consider a complementary ap-
proach: instead of marginalizing out the global latent vari-
ables in order to spread out the interactions among many
local latent variables, CVB-SPN takes advantage of the fast

Collapsed Variational Inference for Sum-Product Networks

exact inference in SPNs and marginalizes out the local la-
tent variables in order to maintain a marginal variational
posterior distribution directly on the global latent variables,
i.e., the model parameters. The posterior mean of the varia-
tional distribution over model parameters can then be used
as a Bayesian estimator. To the best of our knowledge, this
is the first general Bayesian approach to learn the param-
eters of SPNs efficiently in both batch and stochastic set-
tings.

At first glance, marginalizing out all the local latent vari-
ables in graphical models seems to be a bad idea for two
reasons. First, by marginalizing out local latent variables
we naively appear to incur computation exponential in the
tree-width of the graph (Jordan et al., 1999; Wainwright
& Jordan, 2008). Except for graphical models with spe-
cial structures, for example, LDA, Gaussian mixture mod-
els, thin junction trees, etc., such exact computation is in-
tractable by itself. Second, marginalization will in gen-
eral invalidate the conjugacy between the prior distribution
and the joint distribution over global and local latent vari-
ables, which further makes the expectation over the varia-
tional posterior intractable. Fortunately, as we will show
in Sec. 3, the ability of SPNs to model context-specific
independence helps to solve the first problem, and by us-
ing a change of variables CVB-SPN handles the second
problem efficiently. Besides the reduced space complex-
ity, we also show that the objective of CVB-SPN forms a
strictly better lower bound to be optimized than the evi-
dence lower bound (ELBO) in standard VI. To show the
validity of CVB-SPN, we conduct extensive experiments
and compare it with maximum likelihood based methods
in both batch and stochastic settings.

To tackle the second problem described above, there is a
strand of recent work on extending standard VI to general
nonconjugate settings using stochastic sampling from the
variational posterior (Blei et al., 2012; Kingma & Welling,
2013; Ranganath et al., 2014; Mnih & Gregor, 2014; Titsias
& Lázaro-Gredilla, 2014; Titsias, 2015). However, control
variates need to be designed in order to reduce the high
variance incurred by insufficient samples. Furthermore, for
each such sample from the variational posterior, those al-
gorithms need to go through the whole training data set to
compute the stochastic gradient, leading to a total compu-
tational cost O(ND|S|), where N is the sample size. This
is often prohibitively expensive for SPNs.

2. Background
2.1. Sum-Product Networks

A sum-product network (SPN) is a graphical representation
of a joint probability distribution over a set of random vari-
ables X = {X1, . . . , Xn

}. It is a rooted directed acyclic

graph where the interior nodes are sums or products and
the leaves are univariate distributions over X

i

. Edges em-
anating from sum nodes are parameterized with positive
weights. Each node in an SPN encodes an unnormalized
marginal distribution over X.

In more detail, let x be an instantiation of the random vec-
tor X. We associate an unnormalized probability V

k

(x |
w) with each node k when the input to the network is x
with network weights set to be w:

Vk(x | w) =

8
><

>:

p(Xi = xi) k is a leaf node over XiQ
j2Ch(k) Vj(x | w) k is a product nodeP
j2Ch(k) wkjVj(x | w) k is a sum node

(1)
where Ch(k) is the child list of node k in the graph and
w

kj

is the edge weight associated with sum node k and its
child node j. The joint distribution encoded by an SPN
is then defined by the graphical structure and the weights.
The probability/density of a joint assignment X = x is
proportional to the value at the root of the SPN with input
x divided by a normalization constant Vroot(1 | w):

p(x) =
Vroot(x | w)

Vroot(1 | w)

(2)

where the normalization constant Vroot(1 | w) is obtained
by setting V at all the leaf nodes to be 1 and then propa-
gating toward the root according to Eq. 1. Intuitively, set-
ting V at all the leaf nodes to be 1 corresponds to integrat-
ing/marginalizing out the random vector X, which will en-
sure Eq. 2 defines a proper probability distribution. Eq. 2
can also be used to compute the marginal probability of
a partial assignment Y = y: simply set V at leaf nodes
whose corresponding random variable is not in Y to be 1
and other leaf nodes based on the assignment Y = y. In-
tuitively, this corresponds to integrating out variables out-
side of the partial assignment. We can compute conditional
probabilities by evaluating two partial assignments:

p(Y = y | Z = z) =
p(Y = y,Z = z)

p(Z = z)
=

Vroot(y, z | w)

Vroot(z | w)

Since joint, marginal and conditional queries can all be
computed by two network passes, exact inference takes lin-
ear time with respect to the network size. Without loss of
generality, in this paper we focus our attention on the case
where all the random variables X

i

are Boolean. However,
direct extension to the continuous case is not hard; one can
simply replace each univariate distribution at the leaves of
the graph with the desired continuous distribution.

2.2. SPNs as Mixture Models

It has been recently shown that any complete and decom-
posable SPN S over X = {X1, . . . , Xn

} is equivalent to

Collapsed Variational Inference for Sum-Product Networks

W1 W2 W3 · · · W
m

H1 H2 H3 · · · H
m

X1 X2 X3 · · · X
n

D

Figure 1. Graphical model representation of SPN S. The box
is a plate that represents replication over D training instances.
m = O(|S|) corresponds to the number of sum nodes and n is
the number of observable variables in S. Typically, m � n.
W,H,X correspond to global latent variables, local latent vari-
ables and observable variables, respectively.

a Bayes net with O(n|S|) size (Zhao et al., 2015). The in-
sight behind the construction (Fig. 1) is that each internal
sum node in S corresponds to a latent variable in the con-
structed Bayes net, and the Bayes net will be a bipartite
graph (excluding the nodes that correspond to global latent
variables) with one layer of local latent variables pointing
to one layer of observable variables X. An observable vari-
able is a child of a local latent variable if and only if the
observable variable appears as a descendant of the latent
variable (sum node) in the original SPN. Equivalently, this
shows that the SPN S can be interpreted as a Bayes net
where the number of latent variables per instance is O(|S|).
Although the Bayes net perspective provides an interesting
connection between the two models, we can hardly work on
the Bayes net in practice due to the large number of latent
variables and high treewidth of the graph.

Another representation of an SPN is to decompose it into a
sum of induced trees (Zhao & Poupart, 2015). This decom-
position works as follows:

Definition 1 (Induced tree SPN). Given a complete and
decomposable SPN S over X = {X1, . . . , Xn

}, T =

(T
V

, T
E

) is called an induced tree SPN from S if

1. Root(S) 2 T
V

.
2. If v 2 T

V

is a sum node, then exactly one child of v
in S is in T

V

, and the corresponding edge is in T
E

.
3. If v 2 T

V

is a product node, then all the children of v
in S are in T

V

, and the corresponding edges are in T
E

.

Here T
V

is the node set of T and T
E

is the edge set of T .

The name “induced tree SPN” is justified because it has
been shown that Def. 1 produces mixture components that
are trees whenever the original SPN is complete and de-
composable. A key result based on the notion of in-
duced trees that exhibits the distribution modeled by SPNs

+

⇥ ⇥ ⇥

X1 X1 X2 X2

w
1 w

2

w
3

= w1

+

⇥

X1 X2

+w2

+

⇥

X1 X2

+w3

+

⇥

X1 X2

Figure 2. Induced tree decomposition of a complete and decom-
posable SPN into a mixture model. Each component is character-
ized by a product of univariate distributions over X1 and X2.

is (Zhao & Poupart, 2015):
Theorem 2. Let ⌧

S

= Vroot(1 | 1). Then Vroot(x | w) can
be written as

P
⌧S
t=1

Q
(k,j)2TtE

w
kj

Q
n

i=1 pt(Xi

= x
i

),
where T

t

is the tth unique induced tree of S and p
t

(X
i

)

is a univariate distribution over X
i

in T
t

as a leaf node.

In Thm. 2, ⌧
S

equals the number of induced trees in S .
Fig. 2 gives an illustrative example of Thm. 2. Thm. 2 char-
acterizes both the number of components and the form of
each component in the mixture model, as well as their mix-
ture weights.

2.3. Variational Bayes Inference

Standard variational Bayes inference is an optimization-
based approach to approximate the full posterior distri-
bution of a probabilistic model (Jordan et al., 1999). It
works by constructing and maximizing an evidence lower
bound (ELBO) of the log marginal likelihood function
log p(x). Equivalently, one can minimize the Kullback-
Leibler (KL) divergence between the true posterior distri-
bution and the variational posterior distribution. To review,
let ⇥ = {H,W} represent the set of latent variables in a
probabilistic model (including both the local, H, and the
global, W, latent variables) and let X represent the data.
For example, in mixture models such as LDA, H corre-
sponds to the topic assignments of the words and W cor-
responds to the topic-word distribution matrix. The joint
probability distribution of ⇥ and X is p(X,⇥ |↵↵↵) where↵↵↵
is the set of hyperparameters of the model. Standard VI ap-
proximates the true posterior p(⇥ |X,↵↵↵) with a variational
distribution q(⇥ | ���) with a set of variational parameters
���. This reduces an inference problem into an optimiza-
tion problem in which the objective function is given by
the ELBO:

log p(x | ↵↵↵) � E
q

[log p(x,⇥|↵↵↵)] +H[q(⇥|���)] =:

bL(���)

The variational distribution q(⇥ |���) is typically assumed to
be fully factorized, with each variational parameter �

i

gov-
erning one latent variable ✓

i

. The variational parameters
are then optimized to maximize the ELBO, and the opti-
mal variational posterior will be used as a surrogate to the
true posterior distribution p(⇥ | X,↵↵↵). It is worth noting
that in standard VI the number of variational parameters
is linearly proportional to the number of latent variables,
including both the global and local latent variables.

Collapsed Variational Inference for Sum-Product Networks

3. Collapsed Variational Bayesian Inference
3.1. Motivation

Standard VI methods are computationally infeasible for
SPNs due to the large number of local latent variables for
each training instance, as shown in Fig. 1. Let W denote
the set of global latent variables (model parameters) and
H

d

denote the set of local latent variables, where d indexes
over the training instances. In standard VI we need to main-
tain a set of variational parameters for each of the latent
variables, i.e., W and {H

d

}D
d=1. In the case of SPNs, the

number of local latent variables is exactly the number of
internal sum nodes in the network, which can be linearly
proportional to the size of the network, |S|. Together with
the global latent variables, this leads to a total number of
O(D|S| + |S|) variational parameters to be maintained in
standard VI. As we will see in the experiments, this is pro-
hibitively expensive for SPNs that range from tens of thou-
sands to millions of nodes.

To deal with the expensive computation and storage in stan-
dard VI, we develop CVB-SPN, a collapsed variational al-
gorithm, which, instead of assuming independence among
the local latent variables, models the dependence among
them in an exact fashion. More specifically, we marginal-
ize all the local latent variables out of the joint posterior
distribution and maintain a marginal posterior distribution
over the global latent variables directly. This approach
would not be an option for many graphical models, but
as we will see later, we can take advantage of fast exact
inference in SPNs. On the other hand, we still variation-
ally approximate the posterior distribution of the global
variables (model parameters) using a mean-field approach.
Note this basic assumption made in CVB-SPN is differ-
ent from typical collapsed variational approaches devel-
oped for LDA and HDP (Teh et al., 2006; 2007), where
global latent variables are integrated out and local latent
variables are assumed to be mutually independent. As a re-
sult, CVB-SPN models the marginal posterior distribution
over global latent variables only and hence the number of
variational parameters to be optimized is O(|S|) compared
with O(D|S|) in the standard case.

Intuitively, this is not an unreasonable assumption to make
since compared with local latent variables, the global la-
tent variables in Fig. 1 are further away from the influence
of observations of X and they are mutually independent
a priori. Besides the computational consideration, another
motivation to collapse out the local latent variables is that
no interpretation associated with the local latent variables
in an SPN has so far proven to be useful in practice. Un-
like other mixture models such as LDA, where local latent
variables correspond to topic assignment of words, the sum
nodes in SPNs do not share typical statistical interpreta-
tions that may be useful in real-world applications.

CVB-SPN makes fewer assumptions about the indepen-
dence among random variables and has fewer variational
variables to be optimized, but to achieve these benefits, we
must overcome the following difficulties: the cost of ex-
act marginalization over local latent variables and the non-
conjugacy between the prior distribution and the likelihood
function introduced by the marginalization. The first prob-
lem is elegantly handled by the property of SPN that exact
inference over X is always tractable. In what follows we
proceed to derive the CVB-SPN algorithm that efficiently
solves the second problem.

3.2. Collapsed Variational Inference

Throughout the derivation we will assume that the weights
w

kj

associated with a sum node k are locally normalized,
i.e.,

P
j2Ch(k) wkj

= 1, 8k. This can be achieved by
a bottom-up pass of the network in time O(|S|) without
changing the joint probability distribution over X; see Pe-
harz et al. (2015) and Zhao et al. (2015) for more details.
For SPNs with locally normalized weights w, it can be ver-
ified that Vroot(1 | w) = 1, hence the marginal likelihood
function p(x | w) that marginalizes out local latent vari-
ables h is given by Vroot(x | w).

Since the weights associated with each sum node k are
locally normalized, we can interpret each sum node as a
multinomial random variable with one possible value for
each child of the sum node. It follows that we can specify
a Dirichlet prior Dir(w

k

|↵
k

) for each sum node k. Since
all the global latent variables are d-separated before we get
the observation x, a prior distribution over all the weights
can be factorized as:

p(w|↵↵↵) =
mY

k=1

p(w
k

|↵
k

) =

mY

k=1

Dir(w
k

|↵
k

) (3)

Based on Thm. 2, the true posterior distribution after a se-
quence of observations {x

d

}D
d=1 is:

p(w|{x
d

}D
d=1,↵↵↵) / p(w|↵↵↵)

DY

d=1

Vroot(xd

|w)

=

mY

k=1

Dir(w
k

|↵
k

)

DY

d=1

⌧SX

t=1

Y

(k,j)2TtE

w
kj

nY

i=1

p
t

(x
di

) (4)

Intuitively, Eq. 4 indicates that the true posterior distribu-
tion of the model parameters is a mixture model where the
number of components scales as ⌧D

S

and each component
is a product of m Dirichlets, one for each sum node. Here
⌧
S

corresponds to the number of induced trees in S (cf.
Thm. 2). For discrete SPNs the leaf univariate distributions
are simply point mass distributions, i.e., indicator variables.
For continuous distributions such as Gaussians, we also
need to specify the priors for the parameters of those leaf

Collapsed Variational Inference for Sum-Product Networks

distributions, but the analysis goes the same as the discrete
case. Eq. 4 is intractable to compute exactly, hence we
resort to collapsed variational inference. To simplify nota-
tion, we will assume that there is only one instance in the
data set, i.e., D = 1. Extension of the following derivation
to multiple training instances is straightforward. Consider
the log marginal probability over observable variables that
upper bounds the new ELBO L(���):

log p(x | ↵↵↵) � E
q(w|�

�

�)[log p(x,w|↵↵↵)] +H[q(w|���)] (5)

= E
q(w|�

�

�)[log

X

h

p(x,h,w|↵↵↵)] +H[q(w|���)]

=

: L(���)

where q(w|���) =
Q

m

k=1 Dir(w
k

|�
k

) is the factorized varia-
tional distribution over w to approximate the true marginal
posterior distribution p(w|x,↵↵↵) =

P
h

p(w,h|x,↵↵↵). Note
that here we are using q(w) as opposed to q(w)q(h) in
standard VI. We argue that L(���) gives us a better lower
bound to optimize than the one given by standard VI. To
see this, let bL(���) be the ELBO given by standard VI, i.e.,

bL(���) = E
q(w)q(h)[log p(x,w,h|↵↵↵)] +H[q(w)q(h)]

we have:

L(���) = E
q(w)[log p(x,w|↵↵↵)] +H[q(w)]

= E
q(w)

E
p(h|w,x,↵

↵

↵)[log
p(h,w,x | ↵↵↵)
p(h|w,x,↵↵↵)

]

�
+H[q(w)]

= max

q(h|w)
E
q(w)

E
q(h|w)[log

p(h,w,x | ↵↵↵)
q(h|w)

]

�
+H[q(w)]

� max

q(h)
E
q(w)

E
q(h)[log

p(h,w,x | ↵↵↵)
q(h)

]

�
+H[q(w)]

� E
q(w)q(h)[log p(x,w,h|↵↵↵)] +H[q(w)q(h)]

=

bL(���)

The first equality holds by the definition of L(���) and the
second equality holds since log p(x,w|↵↵↵) = log

p(h,w,x|↵

↵

↵)
p(h|w,x,↵

↵

↵)

is constant w.r.t. E
p(h|w,x,↵

↵

↵)[·]. The third equality holds
because the inner expectation is the maximum that can
be achieved by the negative KL divergence between
the approximate posterior q(h|w) and the true posterior
p(h|w,x,↵↵↵). The inequality in the fourth line is due to
the fact that the maximization over q(h|w) is free of con-
straint hence the optimal posterior is given by the true
conditional posterior q⇤(h|w) = p(h|w,x,↵↵↵), while the
maximization over q(h) in the fourth line needs to sat-
isfy the independence assumption made in standard VI, i.e.,
q(h|w) = q(h). Combining the inequality above with (5),
we have

log p(x | ↵↵↵) � L(���) � bL(���) (6)

which shows that the ELBO given by the collapsed varia-
tional inference is a better lower bound than the one given

by standard VI. This conclusion is also consistent with the
one obtained in collapsed variational inference for LDA
and HDP (Teh et al., 2006; 2007) where the authors col-
lapsed out the global latent variables instead of the lo-
cal latent variables. It is straightforward to verify that
the difference between log p(x|↵↵↵) and L(���) is given by
KL(q(w|���) k p(w|x,↵↵↵)), i.e., the KL-divergence between
the variational marginal posterior and the exact marginal
posterior distribution. Substituting q(w|���) into the KL-
divergence objective and simplifying it, we reach the fol-
lowing optimization objective:

minimize
�

�

�

KL(q(w|���) k p(w|↵↵↵))� E
q(w|�

�

�)[log p(x|w)]

(7)
where the first part can be interpreted as a regularization
term that penalizes a variational posterior that is too far
away from the prior, and the second part is a data-fitting
term that requires the variational posterior to have a good
fit to the training data set. The first part in (7) can be ef-
ficiently computed due to the factorization assumption of
both the prior and the variational posterior. However, the
second part does not admit an analytic form because after
we marginalize out all the local latent variables, q(w|���)
is no longer conjugate to the likelihood function p(x|w) =

Vroot(x|w). We address this problem in the next subsection.

3.3. Upper Bound by Logarithmic Transformation

The hardness of computing E
q(w|�

�

�)[log p(x|w)] makes the
direct optimization of (7) infeasible in practice. While
nonconjugate inference with little analytic work is possi-
ble with recent innovations (Blei et al., 2012; Kingma &
Welling, 2013; Ranganath et al., 2014; Mnih & Gregor,
2014; Titsias & Lázaro-Gredilla, 2014; Titsias, 2015), they
fail to make use of a key analytic property of SPNs, i.e.,
easy marginalization, that allows for the optimal variational
distributions of local variables to be used. In this section we
show how to use a logarithmic transformation trick to de-
velop an upper bound of the objective in (7) which leads to
the efficient CVB-SPN algorithm.

The key observation is that the likelihood of w is
a posynomial function (Boyd et al., 2007). To see
this, as shown in Thm. 2, we have p(x|w) =P

⌧S
t=1

Q
(k,j)2TtE

w
kj

Q
n

i=1 pt(Xi

= x
i

). The product
term with respect to x,

Q
n

i=1 pt(Xi

= x
i

), is guaranteed
to be nonnegative and can be treated as a constant w.r.t.
w. Hence each component in p(x|w), in terms of w,
is a monomial function with positive multiplicative con-
stant, and it follows that p(x|w) is a posynomial func-
tion of w. A natural implication of this observation is that
we can do a change of variables transformation to w such
that log p(x|w) becomes a convex function in terms of the
transformed variables. More specifically, let w0

= logw,
where log(·) is taken elementwise. The log likelihood, now

Collapsed Variational Inference for Sum-Product Networks

expressed in terms of w0, is

log p(x | w) = log

0

@
⌧SX

t=1

Y

(k,j)2TtE

w
kj

nY

i=1

p
t

(X
i

= x
i

)

1

A

= log

0

@
⌧SX

t=1

exp

0

@c
t

+

X

(k,j)2TtE

w0

kj

1

A

1

A

=

:

log p(x | w0

) (8)

where c
t

is defined as c
t

= log

Q
n

i=1 pt(Xi

= x
i

). For
each unique tree T

t

, c
t

+

P
(k,j)2TtE

w0

kj

is an affine func-
tion of w0. Since the log-sum-exp function is convex in its
argument, log p(x | w0

) is convex in w0. Such a change of
variables trick is frequently applied in the geometric pro-
gramming literature to transform a non-convex posynomial
optimization problem into a convex programming prob-
lem (Boyd et al., 2007; Chiang, 2005).

The convexity of log p(x | w0

) helps us to develop a lower
bound of E

q(w|�

�

�)[log p(x|w)] that is efficient to compute.
Let q0(w0

) be the corresponding variational distribution
over w0 induced from q(w) by the bijective transformation
between w and w0. We have

E
q(w)[log p(x | w)] =

Z
q(w) log p(x | w) dw

=

Z
q0(w0

) log p(x | w0

) dw0

� log p(x | E
q

0(w0)[w
0

])

where log p(x | E
q

0(w0)[w
0

]) means the log-likelihood of
x with the edge weights set to be exp(E

q

0(w0)[w
0

])). Since
q(w) =

Q
m

k=1 Dir(w
k

|�
k

) is a product of Dirichlets, we
can compute the weight exp

⇣
E
q

0(w0)[w
0

kj

]

⌘
for each edge

(k, j) as

E
q

0(w0)[w
0

kj

] =

Z
q0(w0

)w0

kj

dw0

=

Z
q0(w0

k

)w0

kj

dw0

k

=

Z
q(w

k

) logw
kj

dw
k

= (�
kj

)� (
X

j

0

�
kj

0
) (9)

where (·) is the digamma function. The equation above
then implies the new edge weight can be computed by

exp

�
E
q

0(w0)[w
0

kj

]

�
= exp

0

@ (�
kj

)� (
X

j

0

�
kj

0
)

1

A

⇡
�
kj

� 1
2P

j

0 �
kj

0 � 1
2

(10)

where the approximation is by exp((x)) ⇡ x � 1
2 when

x > 1. Note that the mean of the variational posterior
is given by w̄

kj

= E
q(w)[wkj

] = �
kj

/
P

j

0 �
kj

0 , which

Algorithm 1 CVB-SPN
Input: Initial ���, prior hyperparameter ↵↵↵, training in-

stances {x
d

}D
d=1.

Output: Locally optimal ���⇤.
1: while not converged do
2: Update w = exp(E

q

0(w0
|�

�

�)[w
0

]) with Eq. 10.
3: Set r

�

�

�

= 0.
4: for d = 1 to D do
5: Bottom-up evaluation of log p(x

d

|w).
6: Top-down differentiation of @

@w

log p(x
d

|w).
7: Update r

�

�

�

based on x
d

.
8: end for
9: Update r

�

�

�

based on KL(q(w|���) k p(w|↵↵↵)).
10: Update ��� with projected GD.
11: end while

is close to exp

⇣
E
q

0(w0)[w
0

kj

]

⌘
when �

kj

> 1. Roughly
speaking, this shows that the lower bound we obtained for
E
q(w)[log p(x | w)] by utilizing the logarithmic transfor-

mation is trying to optimize the variational parameters ���
such that the variational posterior mean has a good fit to
the training data. This is exactly what we hope for since
at the end we need to use the variational posterior mean as
a Bayesian estimator of our model parameter. Combining
all the analysis above, we formulate the following objec-
tive function to be minimized that is an upper bound of the
objective function given in (7):

KL(q(w|���) k p(w|↵↵↵))� log p(x | E
q

0(w0
|�

�

�)[w
0

]) (11)

Note that we will use the approximation given by Eq. 10
in the above optimization formulation and in Alg. 1. This
is a non-convex optimization problem due to the digamma
function involved. Nevertheless we can still achieve a lo-
cal optimum with projected gradient descent in the experi-
ments. We summarize our algorithm, CVB-SPN, in Alg. 1.
For each instance, the gradient of the objective function in
(11) with respect to ��� can be computed by a bottom-up and
top-down pass of the network in time O(|S|). Please refer
to (Zhao & Poupart, 2015; Peharz et al., 2016) for more
details.

3.4. Parallel and Stochastic Variants

Note that Alg. 1 is easily parallelizable by splitting training
instances in the loop (Line 4–Line 8) across threads. It
can also be extended to the stochastic setting where at each
round we sample one instance or a mini-batch of instances
{x

ik}s
k=1 (s is the size of the mini-batch) from the training

set. The stochastic formulation will be helpful when the
size of the full training data set is too large to be stored in
the main memory as a whole, or when the training instances
are streaming so that at each time we only have access to
one instance (Hoffman et al., 2013).

Collapsed Variational Inference for Sum-Product Networks

Table 1. Statistics of data sets and models. n is the number of observable random variables modeled by the network, |S| is the size of the
network and p is the number of parameters to be estimated. n⇥D/p means the ratio of training instances times the number of variables
to the number of parameters.

Data set n |S| p Train Valid Test n⇥D/p
NLTCS 16 13,733 1,716 16,181 2,157 3,236 150.871
MSNBC 17 54,839 24,452 291,326 38,843 58,265 202.541
KDD 2k 64 48,279 14,292 180,092 19,907 34,955 806.457
Plants 69 132,959 58,853 17,412 2,321 3,482 20.414
Audio 100 739,525 196,103 15,000 2,000 3,000 7.649
Jester 100 314,013 180,750 9,000 1,000 4,116 4.979
Netflix 100 161,655 51,601 15,000 2,000 3,000 29.069
Accidents 111 204,501 74,804 12,758 1,700 2,551 18.931
Retail 135 56,931 22,113 22,041 2,938 4,408 134.560
Pumsb-star 163 140,339 63,173 12,262 1,635 2,452 31.638
DNA 180 108,021 52,121 1,600 400 1,186 5.526
Kosarak 190 203,321 53,204 33,375 4,450 6,675 119.187
MSWeb 294 68,853 20,346 29,441 3,270 5,000 425.423
Book 500 190,625 41,122 8,700 1,159 1,739 105.783
EachMovie 500 522,753 188,387 4,524 1,002 591 12.007
WebKB 839 1,439,751 879,893 2,803 558 838 2.673
Reuters-52 889 2,210,325 1,453,390 6,532 1,028 1,540 3.995
20 Newsgrp 910 14,561,965 8,295,407 11,293 3,764 3,764 1.239
BBC 1058 1,879,921 1,222,536 1,670 225 330 1.445
Ad 1556 4,133,421 1,380,676 2,461 327 491 2.774

4. Experiments
4.1. Experimental Setting

We conduct experiments on a set of 20 benchmark data sets
to compare the performance of the proposed collapsed vari-
ational inference method with maximum likelihood estima-
tion (Gens & Domingos, 2012). The 20 real-world data sets
used in the experiments have been widely used (Rooshenas
& Lowd, 2014) to assess the modeling performance of
SPNs. All the features are binary. The 20 data sets also
cover both low dimensional and high dimensional statisti-
cal estimation, hence, they enable a thorough experimental
comparison. Detailed information about each data set as
well as the SPN models is shown in Table 1. All the SPNs
are built using LearnSPN (Gens & Domingos, 2013).

We evaluate and compare the performance of CVB-SPN
with other parameter learning algorithms in both the batch
and online learning settings. For a baseline, we com-
pare to the state-of-the-art parameter learning algorithm for
SPNs where the algorithm optimizes the training set log-
likelihood directly in order to find a maximum likelihood
estimator, which we will denote as MLE-SPN. We compare
CVB-SPN and MLE-SPN in both batch and online cases.
To have a fair comparison, we apply the same optimiza-
tion method, i.e., projected gradient descent, to optimize
the objective functions in CVB-SPN and MLE-SPN. CVB-
SPN optimizes over the variational parameters of the poste-
rior distribution based on (11) while MLE-SPN optimizes
directly over the model parameters to maximize the log-
likelihood of the training set. Since the optimization vari-

ables are constrained to be positive in both CVB-SPN and
MLE-SPN, we need to project the parameters back onto the
positive orthant after every iteration. We fix the projection
margin ✏ to 0.01, i.e., w = max{w, 0.01} to avoid numer-
ical issues. We implement both methods with backtracking
line search to automatically adjust the learning rate at each
iteration. In all experiments, the maximum number of itera-
tions is fixed to 50 for both methods. We discard the model
parameters returned by LearnSPN and use random weights
as initial model parameters. CVB-SPN is more flexible to
incorporate those model weights returned by LearnSPN as
the hyperparameters for prior distributions. In the experi-
ments we multiply the weights returned by LearnSPN by a
positive scalar and treat them as the hyperparameters of the
prior Dirichlet distributions. This is slightly better than us-
ing randomly initialized priors, but the differences are neg-
ligible on most data sets. MLE-SPN can also incorporate
the model weights returned by LearnSPN by treating them
as the hyperparameters of fixed prior Dirichlets. This cor-
responds to an MAP formulation. However in practice we
find the MAP formulation performs no better than MLE-
SPN, and on small data sets, MAP-SPN gives consistently
worse results than MLE-SPN; so, we report only results
for MLE-SPN. For both MLE-SPN and CVB-SPN we use
a held-out validation set to pick the best solution during the
optimization process. We report average log-likelihood on
each data set for each method.

Both CVB-SPN and MLE-SPN are easily extended to the
online setting where training instances are coming in a
streaming fashion. In this case we also compare CVB-SPN
and MLE-SPN to an online Bayesian moment matching

Collapsed Variational Inference for Sum-Product Networks

Table 2. Average log-likelihoods on test data. Highest average log-likelihoods are highlighted in bold. " / # are used to represent
statistically better/worse results than (O)CVB-SPN respectively.

Data set MLE-SPN CVB-SPN OBMM OMLE-SPN OCVB-SPN
NLTCS # -6.44 -6.08 "-6.07 #-7.78 -6.12
MSNBC #-7.02 -6.29 -6.35 #-6.94 -6.34
KDD 2k #-4.24 -2.14 -2.14 #-27.99 -2.16
Plants #-28.78 -12.86 "-15.14 #-30.23 -16.03
Audio #-46.42 -40.36 #-40.70 #-48.90 -40.58
Jester #-59.55 -54.26 -53.86 #-63.67 -53.84
Netflix #-64.88 -60.69 -57.99 #-65.72 -57.96
Accidents #-50.14 -29.55 #-42.66 #-58.63 -38.07
Retail #-15.53 -10.91 #-11.42 #-82.42 -11.31
Pumsb-star #-80.61 -25.93 #-45.27 #-80.19 -37.05
DNA #-102.62 -86.73 #-99.61 #-96.84 -91.52
Kosarak #-47.16 -10.70 -11.22 #-111.95 -11.12
MSWeb #-19.69 -9.89 #-11.33 #-140.86 -10.73
Book #-88.16 -34.44 #-35.55 #-299.02 -34.77
EachMovie #-97.15 -52.63 "-59.50 #-284.92 -64.75
WebKB #-199.15 -161.46 "-165.57 #-413.94 -169.31
Reuters-52 #-218.97 -85.45 -108.01 #-513.97 -108.04
20 Newsgrp #-260.69 -155.61 #-158.01 #-728.11 -156.63
BBC #-372.45 -251.23 #-275.43 #-517.36 -272.56
Ad #-311.87 -19.00 #-63.81 #-572.01 -57.56

method (OBMM) (Rashwan et al., 2016) that is designed
for learning SPNs. OBMM is a purely online algorithm
in the sense that it can only process one instance in each
update in order to avoid the exponential blow-up in the
number of mixture components. OBMM constructs an ap-
proximate posterior distribution after seeing each instance
by matching the first and second moments of the approx-
imate posterior to the exact posterior. In this experiment,
we compare both CVB-SPN (OCVB-SPN) and MLE-SPN
(OMLE-SPN) to OBMM where only one pass over the
training set is allowed for learning and at each round only
one instance is available to each of the algorithms.

4.2. Results

All experiments are run on a server with Intel Xeon CPU
E5 2.00GHz. The running time ranges from 2 min to
around 5 days depending on the size of the data set and
the size of the network. All algorithms have roughly the
same running time on the same data set as they scale lin-
early in the size of the training set and the size of the net-
work. Table 2 shows the average joint log-likelihood scores
of different parameter learning algorithms on 20 data sets.
For each configuration, we use bold numbers to highlight
the best score among the offline methods and among the
online methods. We also use " / # to indicate whether
the competitor methods achieve statistically significant bet-
ter/worse results than CVB-SPN on the corresponding test
data set under the Wilcoxon signed-rank test (Wilcoxon,
1950) with p-value 0.05. In the batch learning experi-
ment, CVB-SPN consistently dominates MLE-SPN on ev-
ery data set with a large margin. The same results can

be observed in the online learning scenarios: both OCVB-
SPN and OBMM significantly outperform OMLE-SPN on
all the 20 experiments. These experiments demonstrate the
effectiveness and robustness of Bayesian inference meth-
ods in parameter estimation on large graphical models like
SPNs. In the online learning scenario, OCVB-SPN beats
OBMM on 14 out of the 20 data sets, and achieves statisti-
cally better results on 10 out of the 14. On the other hand,
OBMM obtains statistically better results than OCVB-SPN
on 4 of the data sets. This is partly due to the fact that
OCVB-SPN explicitly optimizes over an objective func-
tion that includes the evaluation of the variational posterior
mean on the likelihood function, while OBMM only tries
to match the first and second moments of the distribution
after each update.

5. Conclusion
We develop a collapsed variational inference method,
CVB-SPN, to learn the parameters of SPNs. CVB-SPN
directly maintains a variational posterior distribution over
the global latent variables by marginalizing out all the lo-
cal latent variables. As a result, CVB-SPN is more mem-
ory efficient than standard VI. We also show that the col-
lapsed ELBO in CVB-SPN is a better lower bound than
the standard ELBO. We construct a logarithmic transfor-
mation trick to avoid the intractable computation of a high-
dimensional expectation. We conduct experiments on 20
data sets to compare the proposed algorithm with state-of-
the-art learning algorithms in both batch and online set-
tings. The results demonstrate the effectiveness of CVB-
SPN in both cases.

Collapsed Variational Inference for Sum-Product Networks

Acknowledgements
HZ and GG gratefully acknowledge support from ONR
contract N000141512365. TA is partially funded by
the Netherlands NWO, project 612.001.119. BA ac-
knowledges support from the National Science Foundation
(NSF) grant number CNS-1518865, the Intel Corporation,
Google, Vodafone, NVIDIA, and the Conklin Kistler fam-
ily fund.

References
Blei, David M, Ng, Andrew Y, and Jordan, Michael I. La-

tent Dirichlet Allocation. the Journal of machine Learn-
ing Research, 3:993–1022, 2003.

Blei, David M, Jordan, Michael I, and Paisley, John W.
Variational Bayesian Inference with Stochastic Search.
In ICML, 2012.

Boyd, Stephen, Kim, Seung-Jean, Vandenberghe, Lieven,
and Hassibi, Arash. A Tutorial on Geometric Pro-
gramming. Optimization and Engineering, 8(1):67–127,
2007.

Casella, George and Berger, Roger L. Statistical Inference,
volume 2. Duxbury Pacific Grove, CA, 2002.

Chiang, Mung. Geometric Programming for Communica-
tion Systems. Now Publishers Inc, 2005.

Gens, Robert and Domingos, Pedro. Discriminative Learn-
ing of Sum-Product Networks. pp. 3248–3256, 2012.

Gens, Robert and Domingos, Pedro. Learning the Structure
of Sum-Product Networks. In ICML, 2013.

Hoffman, Matthew D, Blei, David M, Wang, Chong, and
Paisley, John. Stochastic Variational Inference. The
Journal of Machine Learning Research, 14(1):1303–
1347, 2013.

Jordan, Michael I, Ghahramani, Zoubin, Jaakkola,
Tommi S, and Saul, Lawrence K. An Introduction to
Variational Methods for Graphical Models. Machine
Learning, 37(2):183–233, 1999.

Kingma, Diederik P and Welling, Max. Auto-encoding
Variational Bayes. arXiv preprint arXiv:1312.6114,
2013.

Mnih, Andriy and Gregor, Karol. Neural Variational Infer-
ence and Learning in Belief Networks. In ICML, 2014.

Peharz, Robert, Tschiatschek, Sebastian, Pernkopf, Franz,
and Domingos, Pedro. On Theoretical Properties of
Sum-Product Networks. In AISTATS, 2015.

Peharz, Robert, Gens, Robert, Pernkopf, Franz, and
Domingos, Pedro. On the Latent Variable Inter-
pretation in Sum-Product Networks. arXiv preprint
arXiv:1601.06180, 2016.

Poon, Hoifung and Domingos, Pedro. Sum-Product Net-
works: A New Deep Architecture. In Proc. 12th Conf.
on Uncertainty in Artificial Intelligence, 2011.

Ranganath, Rajesh, Gerrish, Sean, and Blei, David. Black
Box Variational Inference. In AISTATS, pp. 814–822,
2014.

Rashwan, Abdullah, Zhao, Han, and Poupart, Pascal. On-
line and Distributed Bayesian Moment Matching for Pa-
rameter Learning in Sum-Product Networks. In Interna-
tional Conference on Artificial Intelligence and Statis-
tics, 2016.

Rooshenas, Amirmohammad and Lowd, Daniel. Learning
Sum-Product Networks with Direct and Indirect Variable
Interactions. In Proceedings of the 31st International
Conference on Machine Learning, pp. 710–718, 2014.

Teh, Yee W, Newman, David, and Welling, Max. A Col-
lapsed Variational Bayesian Inference Algorithm for La-
tent Dirichlet Allocation. In Advances in neural infor-
mation processing systems, 2006.

Teh, Yee W, Kurihara, Kenichi, and Welling, Max. Col-
lapsed Variational Inference for HDP. In Advances in
neural information processing systems, pp. 1481–1488,
2007.

Titsias, Michalis and Lázaro-Gredilla, Miguel. Doubly
Stochastic Variational Bayes for Non-conjugate Infer-
ence. In Proceedings of the 31st International Confer-
ence on Machine Learning, 2014.

Titsias, Michalis K. Local Expectation Gradients for Dou-
bly Stochastic Variational Inference. arXiv preprint
arXiv:1503.01494, 2015.

Wainwright, Martin J and Jordan, Michael I. Graphi-
cal Models, Exponential Families, and Variational Infer-
ence. Foundations and Trends R� in Machine Learning,
1(1-2):1–305, 2008.

Wilcoxon, Frank. Some Rapid Approximate Statistical
Procedures. Annals of the New York Academy of Sci-
ences, pp. 808–814, 1950.

Zhao, Han and Poupart, Pascal. A Unified Approach
for Learning the Parameters of Sum-Product Networks.
arXiv preprint arXiv:1601.00318, 2015.

Zhao, Han, Melibari, Mazen, and Poupart, Pascal. On
the Relationship between Sum-Product Networks and
Bayesian Networks. In ICML, 2015.

	Introduction
	Background
	Sum-Product Networks
	SPNs as Mixture Models
	Variational Bayes Inference

	Collapsed Variational Bayesian Inference
	Motivation
	Collapsed Variational Inference
	Upper Bound by Logarithmic Transformation
	Parallel and Stochastic Variants

	Experiments
	Experimental Setting
	Results

	Conclusion
	Synthetic Experiments

