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Introduction

• We prove that every Sum-Product Network (SPN) can be converted
into a Bayesian Network (BN) in linear time and space.

• The generated BN has a simple directed bipartite graphical structure
with Algebraic Decision Diagrams (ADDs) as representations of the
local probability distributions.

• Applying the Variable Elimination algorithm (VE) to the generated
BN will recover the original SPN.

• We introduce normal SPN and present a theoretical analysis of the
consistency and decomposability properties.

Background
Definition (Poon and Domingos):

• A rooted DAG with indicator variables as leaves and sum nodes,
product nodes as internal nodes.

• Edges from sum nodes are associated with nonnegative weights.
• The value of a product node is the product of the values of its
children. The value of a sum node is the weighted sum of the values
of its children. The value of an SPN is the value of its root.

Scope: The set of variables that have indicators among the node’s de-
scendants.
Complete: An SPN is complete iff each sum node has children with
the same scope.
Consistent: An SPN is consistent iff no variable appears negated in
one child of a product node and non-negated in another.
Decomposable: An SPN is decomposable iff for every product node
v, scope(vi)

⋂ scope(vj) = ∅ where vi, vj ∈ Ch(v), i 6= j.
Algebraic Decision Diagram: A graphical representation a real func-
tion with boolean input variables, where the graph is a rooted DAG.

X1 X2 X3 X4 f(·) X1 X2 X3 X4 f(·)
0 0 0 0 0.4 1 0 0 0 0.4
0 0 0 1 0.6 1 0 0 1 0.6
0 0 1 0 0.3 1 0 1 0 0.3
0 0 1 1 0.3 1 0 1 1 0.3
0 1 0 0 0.4 1 1 0 0 0.1
0 1 0 1 0.6 1 1 0 1 0.1
0 1 1 0 0.3 1 1 1 0 0.1
0 1 1 1 0.3 1 1 1 1 0.1

Figure 1: Tabular representa-
tion
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Figure 2: Decision tree
representation
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Figure 3: ADD repre-
sentation

Our Results
Normal SPN:

• Complete and decomposable.
• Locally normalized weights.

Theorem 1:
For any complete and consistent SPN S, there exists a normal SPN S ′
such that PrS(·) = PrS ′(·) and |S ′| = O(|S|2).
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Theorem 2 (SPN to BN):
There exists an algorithm that converts any complete and decompos-
able SPN S over Boolean variables X1:N into a BN B with CPDs rep-
resented by ADDs in time O(N |S|). Furthermore, S and B represent
the same distribution and |B| = O(N |S|).
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Corollary 3:
There exists an algorithm that converts any complete and consistent
SPN S over Boolean variables X1:N into a BN B with CPDs repre-
sented by ADDs in time O(N |S|2). Furthermore, S and B represent
the same distribution and |B| = O(N |S|2).
Remark 4:
The BN B generated from S has a simple bipartite DAG structure,
where all the source nodes are hidden variables and the terminal nodes
are the Boolean variables X1:N .

Remark 5:
Assuming sum nodes alternate with product nodes in SPN S,
the depth of S is proportional to the maximum in-degree of the
nodes in B, which, as a result, is proportional to a lower bound
of the tree-width of B.
Theorem 6 (BN to SPN):
Given the BN B with ADD representation of CPDs generated
from a complete and decomposable SPN S over Boolean
variables X1:N , the original SPN S can be recovered by
applying the Variable Elimination algorithm to B in O(N |S|).
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Remark 7:
The combination of the above two theorems shows that
distributions for which SPNs allow a compact representation
and efficient inference, BNs with ADDs also allow a compact
representation and efficient inference.

Conclusion

• The CSI among variables helps to reduce the inference complexity
to enable efficient exact inference even for graphical models with
large tree-width.

• There may exist other techniques to convert an SPN into a BN with a
more compact representation and also a smaller tree-width.

• Structure and parameter learning for SPNs can benefit from the
Bayesian network perspective.

• The analysis showed in this paper can be straightforwardly applied
to analyze the relationship between SPNs and Markov networks.


