

Introduction

- We prove that every Sum-Product Network (SPN) can be converted into a Bayesian Network (BN) in linear time and space.
- The generated BN has a simple directed bipartite graphical structure with Algebraic Decision Diagrams (ADDs) as representations of the local probability distributions.
- Applying the Variable Elimination algorithm (VE) to the generated BN will recover the original SPN.
- We introduce *normal* SPN and present a theoretical analysis of the consistency and decomposability properties.

Background

Definition (Poon and Domingos):

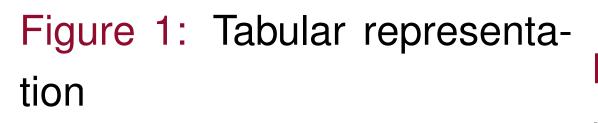
- A rooted DAG with indicator variables as leaves and sum nodes, product nodes as internal nodes.
- Edges from sum nodes are associated with nonnegative weights.
- The value of a product node is the product of the values of its children. The value of a sum node is the weighted sum of the values of its children. The value of an SPN is the value of its root.

Scope: The set of variables that have indicators among the node's descendants.

Complete: An SPN is *complete* iff each sum node has children with the same scope.

Consistent: An SPN is consistent iff no variable appears negated in one child of a product node and non-negated in another. **Decomposable:** An SPN is decomposable iff for every product node $v, \operatorname{scope}(v_i) \cap \operatorname{scope}(v_j) = \emptyset$ where $v_i, v_j \in Ch(v), i \neq j$. Algebraic Decision Diagram: A graphical representation a real function with boolean input variables, where the graph is a rooted DAG.

X_1	X_2	X_3	X_4	$f(\cdot)$	X_1	X_2	X_3	X_4	$f(\cdot)$
0	0	0	0	0.4	1	0	0	0	0.4
0	0	0	1	0.6	1	0	0	1	0.6
0	0	1	0	0.3	1	0	1	0	0.3
0	0	1	1	0.3	1	0	1	1	0.3
0	1	0	0	0.4	1	1	0	0	0.1
0	1	0	1	0.6	1	1	0	1	0.1
0	1	1	0	0.3	1	1	1	0	0.1
0	1	1	1	0.3	1	1	1	1	0.1



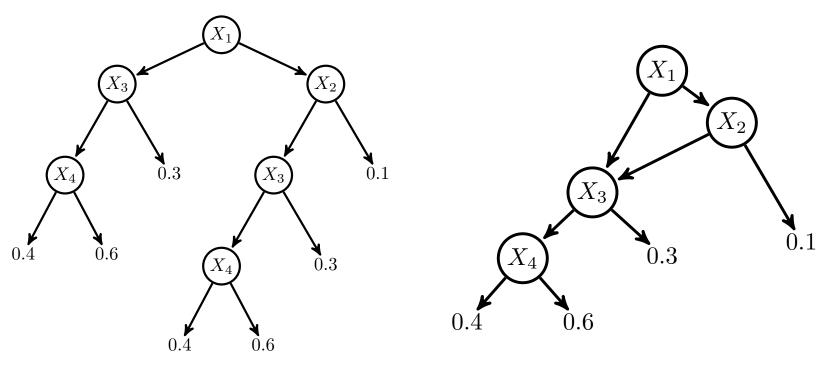


Figure 2: Decision tree representation

sentation

On the Relationship between Sum-Product Networks and Bayesian Networks

Han Zhao, Mazen Melibari and Pascal Poupart {han.zhao, mmelibar, ppoupart}@uwaterloo.ca David R. Cheriton School of Computer Science, University of Waterloo

Figure 3: ADD repre-

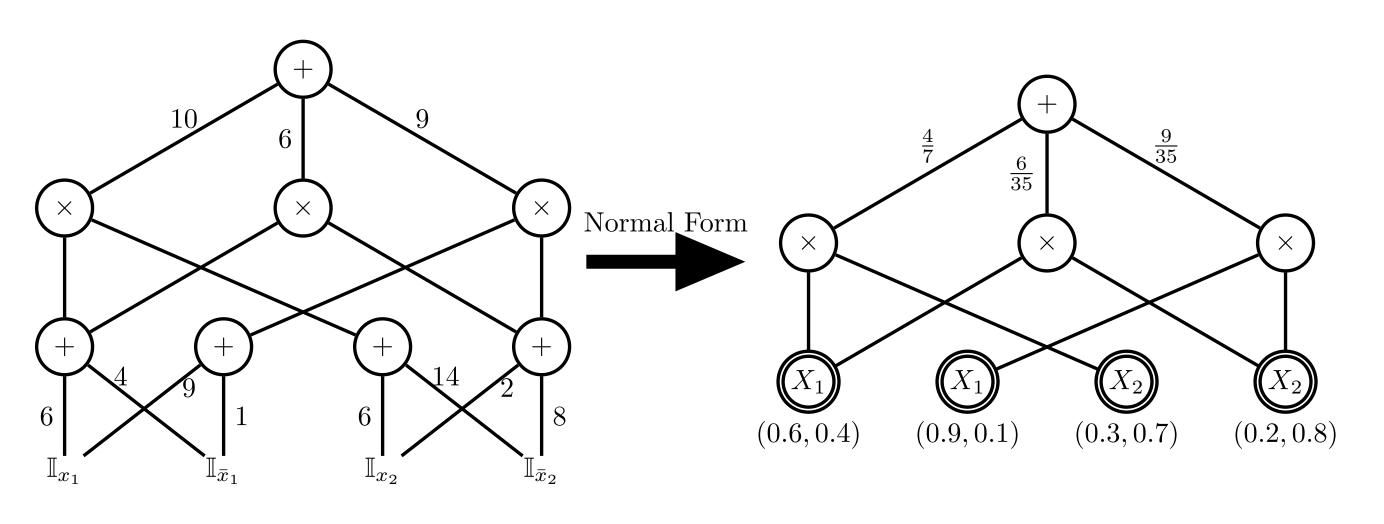
Normal SPN:

• Complete and decomposable.

• Locally normalized weights.

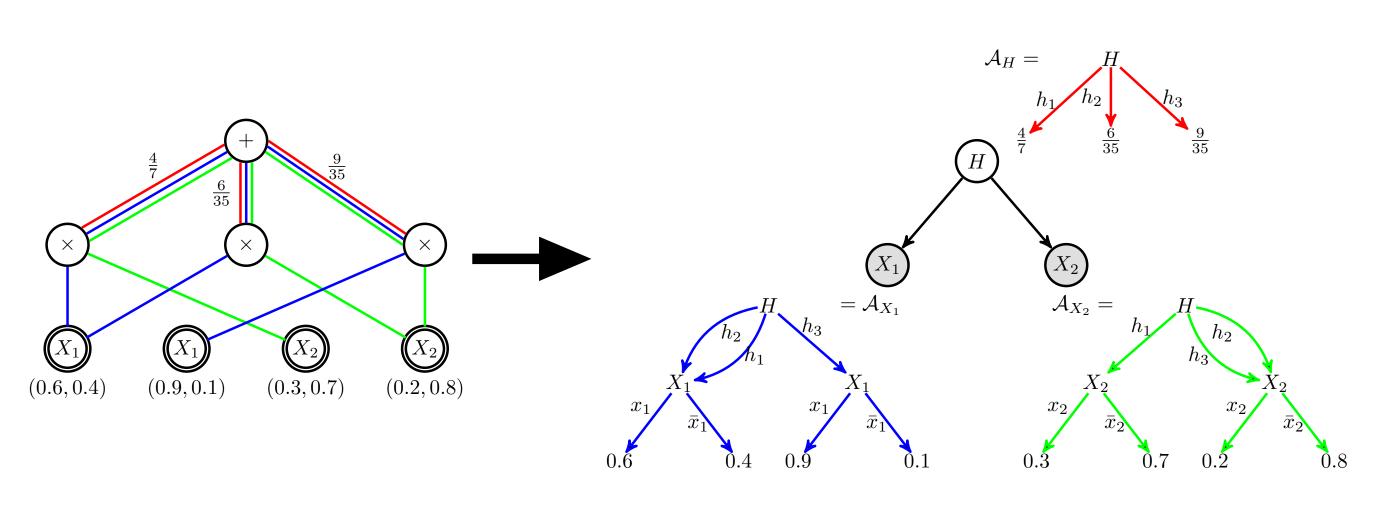
Theorem 1:

For any complete and consistent SPN S, there exists a normal SPN S'such that $\Pr_{\mathcal{S}}(\cdot) = \Pr_{\mathcal{S}'}(\cdot)$ and $|\mathcal{S}'| = O(|\mathcal{S}|^2)$.



Theorem 2 (SPN to BN):

There exists an algorithm that converts any complete and decomposable SPN S over Boolean variables $X_{1:N}$ into a BN B with CPDs represented by ADDs in time O(N|S|). Furthermore, S and B represent the same distribution and $|\mathcal{B}| = O(N|\mathcal{S}|)$.



Corollary 3:

There exists an algorithm that converts any complete and consistent SPN S over Boolean variables $\mathbf{X}_{1:N}$ into a BN \mathcal{B} with CPDs represented by ADDs in time $O(N|\mathcal{S}|^2)$. Furthermore, \mathcal{S} and \mathcal{B} represent the same distribution and $|\mathcal{B}| = O(N|\mathcal{S}|^2)$.

Remark 4:

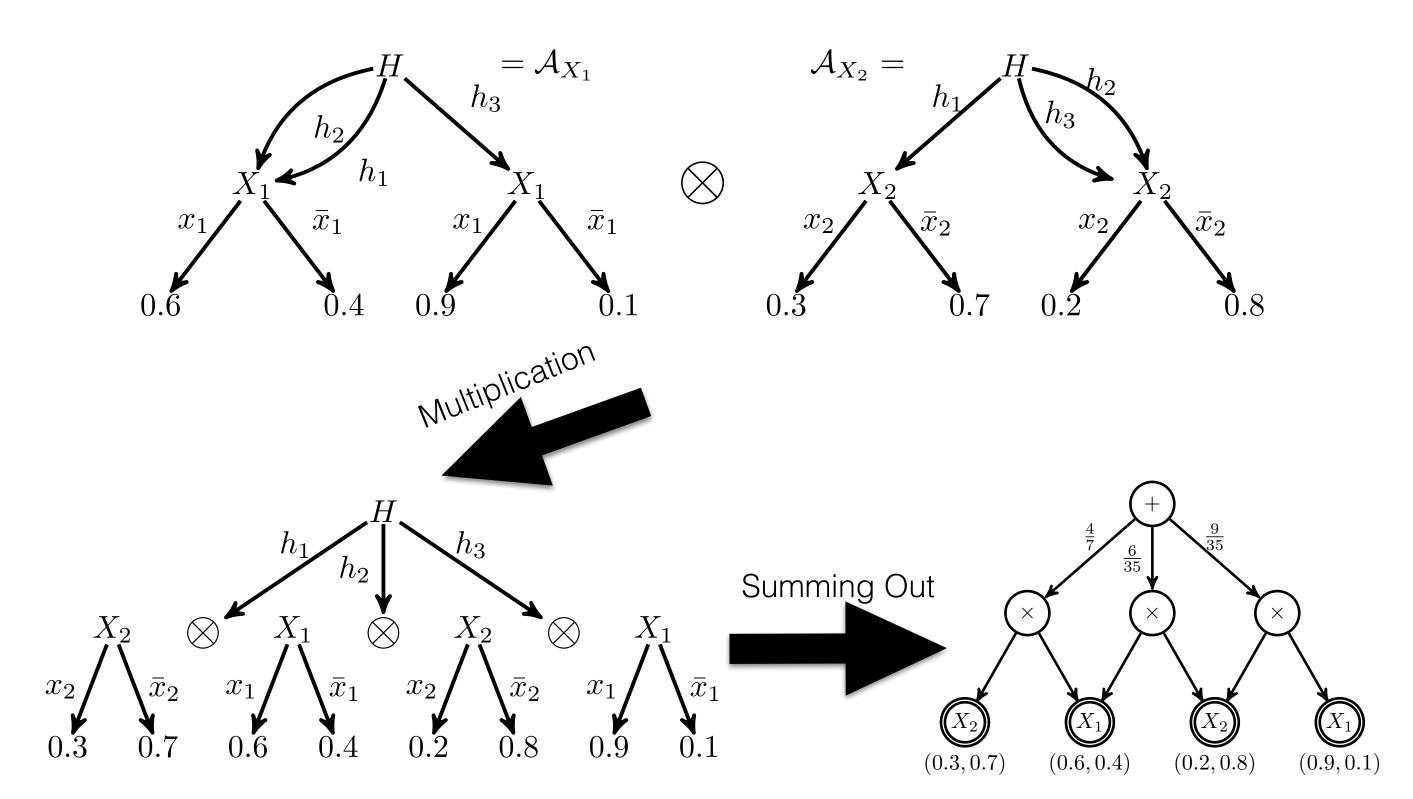
The BN \mathcal{B} generated from \mathcal{S} has a simple bipartite DAG structure, where all the source nodes are hidden variables and the terminal nodes are the Boolean variables $X_{1:N}$.

Our Results

Remark 5:

Assuming sum nodes alternate with product nodes in SPN S, the depth of S is proportional to the maximum in-degree of the nodes in \mathcal{B} , which, as a result, is proportional to a lower bound of the tree-width of \mathcal{B} .

Theorem 6 (BN to SPN): Given the BN \mathcal{B} with ADD representation of CPDs generated from a complete and decomposable SPN S over Boolean variables $\mathbf{X}_{1:N}$, the original SPN \mathcal{S} can be recovered by applying the Variable Elimination algorithm to \mathcal{B} in $O(N|\mathcal{S}|)$.



Remark 7:

The combination of the above two theorems shows that distributions for which SPNs allow a compact representation and efficient inference, BNs with ADDs also allow a compact representation and efficient inference.

- large tree-width.
- Bayesian network perspective.

Conclusion

• The CSI among variables helps to reduce the inference complexity to enable efficient exact inference even for graphical models with

• There may exist other techniques to convert an SPN into a BN with a more compact representation and also a smaller tree-width.

• Structure and parameter learning for SPNs can benefit from the

• The analysis showed in this paper can be straightforwardly applied to analyze the relationship between SPNs and Markov networks.