Introduction

- We prove that every Sum-Product Network (SPN) can be converted
into a Bayesian Network (BN) 1n linear time and space.

- The generated BN has a simple directed bipartite graphical structure
with Algebraic Decision Diagrams (ADDs) as representations of the
local probability distributions.

- Applying the Variable Elimination algorithm (VE) to the generated
BN will recover the original SPN.

» We introduce normal SPN and present a theoretical analysis of the
consistency and decomposability properties.

Background

Definition (Poon and Domingos):

- A rooted DAG with indicator variables as leaves and sum nodes,
product nodes as internal nodes.

- Edges from sum nodes are associated with nonnegative weights.

- The value of a product node is the product of the values of its
children. The value of a sum node 1s the weighted sum of the values
of 1ts children. The value of an SPN 1s the value of 1ts root.

Scope: The set of variables that have indicators among the node’s de-
scendants.

Complete: An SPN 1s complete iff each sum node has children with
the same scope.

Consistent: An SPN 1is consistent iff no variable appears negated 1n
one child of a product node and non-negated 1n another.
Decomposable: An SPN is decomposable iff for every product node
v, scope(v;) N scope(v;) = & where v;, v; € Ch(v),i # J.

Algebraic Decision Diagram: A graphical representation a real func-
tion with boolean input variables, where the graph 1s a rooted DAG.
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Figure 1: Tabular representa-

o Figure 2: Decision tree

representation sentation

Figure 3: ADD repre-
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Our Results
Normal SPN:

- Complete and decomposable.
- Locally normalized weights.

Theorem 1:
For any complete and consistent SPN S, there exists a normal SPN &’
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such that Prg(-) = Prg/(+) and |S’| = O(
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Theorem 2 (SPN to BN):

There exists an algorithm that converts any complete and decompos-
able SPN § over Boolean variables X;.y into a BN 5 with CPDs rep-
resented by ADDs in time O(/N|S|). Furthermore, S and B represent
the same distribution and |B| = O(N|S]).
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Corollary 3:

There exists an algorithm that converts any complete and consistent
SPN & over Boolean variables X ;.5 into a BN B with CPDs repre-
sented by ADDs in time O(N|S|?). Furthermore, S and B represent
the same distribution and |B| = O(N|S|?).

Remark 4:

The BN B generated from S has a simple bipartite DAG structure,
where all the source nodes are hidden variables and the terminal nodes
are the Boolean variables X ..
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Remark 5:

Assuming sum nodes alternate with product nodes in SPN S,
the depth of S Is proportional to the maximum in-degree of the
nodes in B, which, as a result, is proportional to a lower bound
of the tree-width of B.

Theorem 6 (BN to SPN):

Given the BN B with ADD representation of CPDs generated

from a complete and decomposable SPN S over Boolean

variables X;.y, the original SPN S can be recovered by

applying the Variable Elimination algorithm to B in O(N|S}).
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Remark 7:

The combination of the above two theorems shows that
distributions for which SPNs allow a compact representation
and efficient inference, BNs with ADDs also allow a compact
representation and efficient inference.

Conclusion

- The CSI among variables helps to reduce the inference complexity
to enable efficient exact inference even for graphical models with
large tree-width.

- There may exist other techniques to convert an SPN into a BN with a
more compact representation and also a smaller tree-width.

» Structure and parameter learning for SPNs can benefit from the
Bayesian network perspective.

- The analysis showed 1n this paper can be straightforwardly applied
to analyze the relationship between SPNs and Markov networks.



