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Spectral Learning

What is spectral learning?

» New methods in machine learning to tackle mixture models
and graphical models with latent variables.
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Spectral Learning

What is spectral learning?

» New methods in machine learning to tackle mixture models
and graphical models with latent variables.

» Dates back to Karl Pearson's method of moments approach to
solve mixture of Gaussians.

» An alternative to the principle of maximum likelihood
estimation and Bayesian inference.

» Been widely applied to various models, including Hidden
Markov Models [1, 2], mixture of Gaussians [3], Topic
Models [4, 5, 6] and latent junction trees [7, 8], etc.

Today | will focus on spectral algorithm for Hidden Markov Models.
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HMM

Hidden Markov Model
» A discrete time stochastic process.
» Satisfies Markovian property.

» The state of the system at each time step is hidden, only the
observation of the system is visible.
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HMM
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HMM can be defined as a triple (T, O, m):
» Transition matrix T € R™™, T = Pr(spp1 =i | st = J).
» Observation matrix O € R"™*™, O = Pr(o; =i | st = j).

» Initial distribution 7 € R™, 7; = Pr(s; = ).
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HMM

Given an HMM H = (T, O, 7), we are interested in two inference
problems:
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HMM

Given an HMM H = (T, O, 7), we are interested in two inference
problems:

1. Marginal Inference (Estimation problem). Computing the
marginal probability

r(o1:¢) ZPf Olt751t)—zpr s1:¢) Pr(o1:¢|s1:¢)

S1:t S1:t
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HMM

Given an HMM H = (T, O, 7), we are interested in two inference
problems:

1. Marginal Inference (Estimation problem). Computing the
marginal probability

r(o1:¢) ZProltaSIt)—ZPrslt Pr(o1.¢|s1:¢)

S1:t S1:t

2. MAP Inference (Decoding problem). Computing the sequence
si.; maximizing the posterior probability

s1.c = argmax Pr(sy.¢|o1:¢)

S1:t
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HMM

Given an HMM H = (T, O, 7), we are interested in two inference
problems:

1. Marginal Inference (Estimation problem). Computing the
marginal probability

r(o1:¢) E Pr(o1.t,51:t) = g Pr(si.¢) Pr(o1:¢|s1:t)
S1:t S1:t

Dynamic Programming !

2. MAP Inference (Decoding problem). Computing the sequence
si.; maximizing the posterior probability

s1.c = argmax Pr(sy.¢|o1:¢)

S1:t
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Given an HMM H = (T, O, 7), we are interested in two inference
problems:

1. Marginal Inference (Estimation problem). Computing the
marginal probability

r(o1:¢) E Pr(o1.t,51:t) = g Pr(si.¢) Pr(o1:¢|s1:t)
S1:t S1:t

Dynamic Programming !
2. MAP Inference (Decoding problem). Computing the sequence
si.; maximizing the posterior probability

s1.c = argmax Pr(sy.¢|o1:¢)
S1:t

Viterbi Algorithm !
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HMM

Given an HMM H = (T, O, 7), we are interested in two inference
problems:

1. Marginal Inference (Estimation problem). Computing the
marginal probability

r(or:t) ZPf Olt751t)—zpr s1.¢) Pr(or:¢]s1:t)
S1:t S1:t
Dynamic Programming !
2. MAP Inference (Decoding problem). Computing the sequence
si.; maximizing the posterior probability

si.¢ = arg max Pr(s1.¢|01:)
S1:t

Viterbi Algorithm !
What about the learning problem?
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HMM Reparametrization

Let H = (T, O, m) be an HMM, define the following observable
operators:

A, & Tdiag(Ox1,-.., Oxm), Vx € [n]

H = (7, Ax),Vx € [n] is an equivalent parameterization of HMM.
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H = (7, Ax),Vx € [n] is an equivalent parameterization of HMM.
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HMM Reparametrization

Let H = (T, O, m) be an HMM, define the following observable
operators:

A, & Tdiag(Ox1,-.., Oxm), Vx € [n]

H = (7, Ax),Vx € [n] is an equivalent parameterization of HMM.
®—O

l

Axli,j] = Pr(se+1 = i|st = j) x Pr(or = x|st = j) = Pr(st11 =
/.7 O = X’St :_])

WATERLOO | CHERITON SCHOOL OF COMPUTER SCIENCE

17 /69



HMM Reparametrization

We can express the marginal probability in terms of observable
operators:

Prione) = Y Pr(onsuer1)

Stit+1
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HMM Reparametrization

We can express the marginal probability in terms of observable

operators:
Pr(or.) = Y Pr(one,siti1)
S1:t+1
= Z [Pr(se+1]st) Pr(ot]st)] - - - [Pr(sz2|s1) Pr(o1]s1)] Pr(s1)
S1:t+1
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HMM Reparametrization

We can express the marginal probability in terms of observable
operators:

Pr(or.) = Y Pr(one,siti1)

Stit+1

= Z [Pr(se+1]st) Pr(ot]st)] - - - [Pr(sz2|s1) Pr(o1]s1)] Pr(s1)

S1:t+1

= Z Aot [5t+17 St] te A01 [52a 51]71'51
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HMM Reparametrization

We can express the marginal probability in terms of observable

operators:

Pr(o1.t)

> Pr(ove, siet1)

Stit+1

Z [Pr(se+1]st) Pr(ot]st)] - - - [Pr(sz2|s1) Pr(o1]s1)] Pr(s1)

S1:t+1

Z Aot [5t+17 St] te A01 [52a 51]71'51

S1:t+1

17A,, - Ao
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HMM Reparametrization

We can express the marginal probability in terms of observable

operators:
Pr(or.) = Y Pr(one,siti1)
Stit+1
= Z [Pr(se+1]st) Pr(ot]st)] - - - [Pr(sz2|s1) Pr(o1]s1)] Pr(s1)
S1:t+1
= D Axlseri, sl Agls, silms,
S1:t+1
= 1TA, - Ay

Goal of Learning: Estimate the observable operators from sequence
of observations.
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Spectral Learning for HMM [1]

Assumption 1: 7 > 0 element-wise, and T and O are full rank
(rank(T) = rank(O) = m). Define the first three order moments
of the observations:
Pl[i] = Pr(xl) =
Poali,j] = Pr(xe =i, x1 = j)

P3,x,1[i,j] = PI’(X3 =1i,X0 =X, X1 :j)7vX c [n]
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Spectral Learning for HMM [1]

Assumption 1: 7 > 0 element-wise, and T and O are full rank
(rank(T) = rank(O) = m). Define the first three order moments
of the observations:

Pl[i] = Pr(xl) =i

P2,1[i7j] = Pr(X2 — i7X1 :J)
P37X71[l'7j] = Pr(X3 =1i,Xp = X, X1 :j)7vx c [n]

Let U € R"™™ be the left singular matrix of P> 1, define the
following observable operators:

by =U"P;
boo = (P31 U)T Py
B.=(UTP3,1)(UTP21)T, Vxe€|n]
where M denotes the Moore-Penrosg pseudoinyerse Q6 mattizeMe science
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Spectral Learning for HMM [1]

Theorem (Observable HMIM Representation [1])
Assume the HMM obeys assumption 1, then
1. by =(UTO)r
bl =1T(UT0)!
. By=(UTO)A(UTO)™! vxe[n]
Pr(o1.t) = bL By, --- By b1

B WD
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Spectral Learning for HMM [1]

Theorem (Observable HMIM Representation [1])
Assume the HMM obeys assumption 1, then
1. by =(UTO)r
bl =1T(UT0)!
B. = (UTO)A(UTO)™t vx € [n]
Pr(o1.t) = bL By, --- By b1

»wom

b1, bso and By only depend on first three order moments of
observations, free of hidden states !
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Spectral Learning for HMM [1]

Main result of Spectral Learning algorithm for HMM:

Theorem (Sample Complexity)

There exists a constant C > 0 such that the following holds. Pick
any 0 <e,n<1landt>1 Assume the HMIM obeys assumption
1, and

t2 < m - log(1/¢) N m-ng(e)~log(1/e))

>C. .
N=cC €2 m(O)2O'm(P271)4 O’m(O)zo‘m(PgJ)z

With probability at least 1 — 7, the model returned by the spectral
learning algorithm for HMM satisfies

> [Pr(xwe) — Prixue)| < e

X1ye 09Xt

where ng(e) = O(e/(1=9)), s > 1 a constant.
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Compared with EM

Expectation-Maximization [9]:

» Local search heuristic algorithm based on the principle of
Maximum Likelihood Estimation

For a given t > 1, and 0 < ¢, < 1, spectral learning algorithm:
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Compared with EM

Expectation-Maximization [9]:

» Local search heuristic algorithm based on the principle of
Maximum Likelihood Estimation

» Local optima problem.
» No consistency guarantees.
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Compared with EM

Expectation-Maximization [9]:

» Local search heuristic algorithm based on the principle of
Maximum Likelihood Estimation

» Local optima problem.
» No consistency guarantees.
For a given t > 1, and 0 < ¢, < 1, spectral learning algorithm:

> A finite sample complexity to be consistent in terms of Ly
error on marginal probability.
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Compared with EM

Expectation-Maximization [9]:
» Local search heuristic algorithm based on the principle of
Maximum Likelihood Estimation

» Local optima problem.
» No consistency guarantees.
For a given t > 1, and 0 < ¢, < 1, spectral learning algorithm:

> A finite sample complexity to be consistent in terms of Ly
error on marginal probability.

» No local optima since it only solves an SVD without any local
search.
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EM v.s. Spectral algorithm

Two synthetic experiments:

SmallSyn | LargeSyn
# states 4 50
# observations 8 100
test set size 4096 10,000
length of test sequence 4 50

Measure: normalized L; prediction error on test data set

L = Z | Pr(x1:¢) — F/;r(xl:t)‘

X1;t€T

where T is the test set.

1
t
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EM v.s. Spectral algorithm

SmallSyn LargeSyn
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EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:
» Size of training data.
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EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:
» Size of training data.
» Estimation of rank hyperparameter.
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EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:
» Size of training data.
» Estimation of rank hyperparameter.
» Length of test sequence.
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EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:
» Size of training data.
» Estimation of rank hyperparameter.
» Length of test sequence.
Proportion of negative probabilities:

{Pr(x1:t) <0 | x1.c € T}

|
NEG_PROP =
7l

SmallSyn LargeSyn

°
S
°
@

Y

°

035

°

°

°

Proportion of Negative Probabilities
°
4 °

Proportion of Negative Probabilities
IS
R

1.5 35 4 0 40 50

z 25 3 10 20 30
Rank Hyperparameter Rank Hyperparameter SCIENCE
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Compared with EM

Why EM succeeds in practice?
If the log-likelihood function of model parameter tends to
concave/quasi-concave when the sample size goes to infinity 7
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Compared with EM

Why EM succeeds in practice?
If the log-likelihood function of model parameter tends to
concave/quasi-concave when the sample size goes to infinity 7

1. Local search algorithms, for example, EM algorithm in our
case, will converge to global optima, hence obtain the
maximum likelihood estimator [10].
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If the log-likelihood function of model parameter tends to
concave/quasi-concave when the sample size goes to infinity 7
1. Local search algorithms, for example, EM algorithm in our
case, will converge to global optima, hence obtain the
maximum likelihood estimator [10].
2. Consistency. Sequence of MLE converges in probability to the
true model parameter (suppose the model is identifiable by
parameter) [11].
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Why EM succeeds in practice?
If the log-likelihood function of model parameter tends to
concave/quasi-concave when the sample size goes to infinity 7

1. Local search algorithms, for example, EM algorithm in our
case, will converge to global optima, hence obtain the
maximum likelihood estimator [10].

2. Consistency. Sequence of MLE converges in probability to the
true model parameter (suppose the model is identifiable by
parameter) [11].

3. Asymptotic normality. The distribution of MLE tends to be a
Gaussian distribution with mean the true parameter and
covariance matrix equal to the inverse the Fisher information
matrix, i.e., more and more concentrated [11].
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Compared with EM

Why EM succeeds in practice?
If the log-likelihood function of model parameter tends to
concave/quasi-concave when the sample size goes to infinity 7

1. Local search algorithms, for example, EM algorithm in our
case, will converge to global optima, hence obtain the
maximum likelihood estimator [10].

2. Consistency. Sequence of MLE converges in probability to the
true model parameter (suppose the model is identifiable by
parameter) [11].

3. Asymptotic normality. The distribution of MLE tends to be a
Gaussian distribution with mean the true parameter and
covariance matrix equal to the inverse the Fisher information
matrix, i.e., more and more concentrated [11].

4. Most statistical efficient consistent estimator of model

parameter [11].
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Synthetic Experiment

Is our conjecture true in HMM? An HMM with one single
parameter for visualization:

6 1-90 0.7 0.3
H:<T:(1—0 0 >’O:<0.3 0.7)’”:(0'5’0‘5)>

Beta distribution with uniform distribution as prior.
Exact Bayesian updating with more and more observations.
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Synthetic Experiment

(normalized) likelihood
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Synthetic Experiment

(normalized) likelihood
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Synthetic Experiment

(normalized) likelihood

2

10 observations
20 observations
30 observations
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Synthetic Experiment

o

10 observations
20 observations
1.8 30 observations
40 observations

(normalized) likelihood
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Synthetic Experiment

3

10 observations
20 observations
30 observations
40 observations
50 observations

(normalized) likelihood
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Synthetic Experiment

3

10 observations
20 observations
30 observations
40 observations
50 observations
60 observations

(normalized) likelihood
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Synthetic Experiment

3

10 observations
20 observations
30 observations
40 observations
50 observations
60 observations
70 observations

(normalized) likelihood
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Synthetic Experiment

(normalized) likelihood
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Synthetic Experiment

(normalized) likelihood
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Synthetic Experiment

5
10 observations
20 observations
4.50 30 observations
40 observations
50 observations
4 60 observations
70 observations
80 observations
-8 3.5 90 observations
o ——— 100 observations
£
o 3
=
—
T 25
(0]
N
=
2
IS
—
o
Eis
1
0.5
0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1



Synthetic Experiment

Another small synthetic experiment: HMM with 2 states, 2
observations and 4 free parameters.
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Synthetic Experiment

Another small synthetic experiment: HMM with 2 states, 2
observations and 4 free parameters.

Log-likelihood Comparison
0 T T

== EM log-likelihood
True log-likelihood

Log-likelihood

-100

-120

-140 L L i
0 50 100 150 200

Training Size
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Conclusions

Spectral learning for HMM
Pros:

1. Additive L1 error bound with finite sample complexity.

Cons:
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Conclusions

Spectral learning for HMM
Pros:

1. Additive L1 error bound with finite sample complexity.
2. No local optima.

Cons:
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Conclusions

Spectral learning for HMM
Pros:

1. Additive L1 error bound with finite sample complexity.
2. No local optima.
Cons:

1. Negative probability.
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Conclusions

Spectral learning for HMM
Pros:

1. Additive L1 error bound with finite sample complexity.
2. No local optima.

Cons:
1. Negative probability.

2. Not most statistically efficient.
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Conclusions

Spectral learning for HMM
Pros:

1. Additive L1 error bound with finite sample complexity.
2. No local optima.
Cons:
1. Negative probability.
2. Not most statistically efficient.

3. Slow to converge.
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Conclusions

EM for HMM
Pros:

1. Fast to converge.

Cons:
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Conclusions

EM for HMM
Pros:

1. Fast to converge.

2. Statistically efficient.

Cons:
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Conclusions

EM for HMM
Pros:

1. Fast to converge.
2. Statistically efficient.

3. Optimization based approach.

Cons:
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Conclusions

EM for HMM
Pros:

1. Fast to converge.

2. Statistically efficient.

3. Optimization based approach.
Cons:

1. Local search heuristics, no provable guarantee for global
optima.
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Conclusions

EM for HMM
Pros:

1. Fast to converge.

2. Statistically efficient.

3. Optimization based approach.
Cons:

1. Local search heuristics, no provable guarantee for global
optima.

2. Stuck in local optima for non-convex optimization.
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