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Spectral Learning

What is spectral learning?

I New methods in machine learning to tackle mixture models
and graphical models with latent variables.

I Dates back to Karl Pearson’s method of moments approach to
solve mixture of Gaussians.

I An alternative to the principle of maximum likelihood
estimation and Bayesian inference.

I Been widely applied to various models, including Hidden
Markov Models [1, 2], mixture of Gaussians [3], Topic
Models [4, 5, 6] and latent junction trees [7, 8], etc.

Today I will focus on spectral algorithm for Hidden Markov Models.
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HMM

Hidden Markov Model

I A discrete time stochastic process.

I Satisfies Markovian property.

I The state of the system at each time step is hidden, only the
observation of the system is visible.
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HMM

HMM can be defined as a triple 〈T ,O, π〉:
I Transition matrix T ∈ Rm×m, Tij = Pr(st+1 = i | st = j).

I Observation matrix O ∈ Rn×m, Oij = Pr(ot = i | st = j).

I Initial distribution π ∈ Rm, πi = Pr(s1 = i).
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HMM

Given an HMM H = 〈T ,O, π〉, we are interested in two inference
problems:

1. Marginal Inference (Estimation problem). Computing the
marginal probability

Pr(o1:t) =
∑
s1:t

Pr(o1:t , s1:t) =
∑
s1:t

Pr(s1:t) Pr(o1:t |s1:t)

Dynamic Programming !

2. MAP Inference (Decoding problem). Computing the sequence
s∗1:t maximizing the posterior probability

s∗1:t = arg max
s1:t

Pr(s1:t |o1:t)

Viterbi Algorithm !

What about the learning problem?
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HMM Reparametrization

Let H = 〈T ,O, π〉 be an HMM, define the following observable
operators:

Ax , T diag(Ox ,1, . . . ,Ox ,m), ∀x ∈ [n]

H = 〈π,Ax〉,∀x ∈ [n] is an equivalent parameterization of HMM.

Ax [i , j ] = Pr(st+1 = i |st = j)× Pr(ot = x |st = j) = Pr(st+1 =
i , ot = x |st = j).
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HMM Reparametrization

We can express the marginal probability in terms of observable
operators:

Pr(o1:t) =
∑
s1:t+1

Pr(o1:t , s1:t+1)

=
∑
s1:t+1

[Pr(st+1|st) Pr(ot |st)] · · · [Pr(s2|s1) Pr(o1|s1)] Pr(s1)

=
∑
s1:t+1

Aot [st+1, st ] · · ·Ao1 [s2, s1]πs1

= 1TAot · · ·Ao1π

Goal of Learning: Estimate the observable operators from sequence
of observations.
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Spectral Learning for HMM [1]

Assumption 1: π > 0 element-wise, and T and O are full rank
(rank(T ) = rank(O) = m). Define the first three order moments
of the observations:

P1[i ] = Pr(x1) = i

P2,1[i , j ] = Pr(x2 = i , x1 = j)

P3,x ,1[i , j ] = Pr(x3 = i , x2 = x , x1 = j), ∀x ∈ [n]

Let U ∈ Rn×m be the left singular matrix of P2,1, define the
following observable operators:

b1 = UTP1

b∞ = (PT
2,1U)+P1

Bx = (UTP3,x ,1)(UTP2,1)+, ∀x ∈ [n]

where M+ denotes the Moore-Penrose pseudoinverse of matrix M.
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Spectral Learning for HMM [1]

Theorem (Observable HMM Representation [1])

Assume the HMM obeys assumption 1, then

1. b1 = (UTO)π

2. bT
∞ = 1T (UTO)−1

3. Bx = (UTO)Ax(UTO)−1 ∀x ∈ [n]

4. Pr(o1:t) = bT
∞Bxt · · ·Bx1b1

b1, b∞ and Bx only depend on first three order moments of
observations, free of hidden states !
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Spectral Learning for HMM [1]

Main result of Spectral Learning algorithm for HMM:

Theorem (Sample Complexity)

There exists a constant C > 0 such that the following holds. Pick
any 0 < ε, η < 1 and t ≥ 1. Assume the HMM obeys assumption
1, and

N ≥ C · t2

ε2
·
(

m · log(1/ε)

σm(O)2σm(P2,1)4
+

m · n0(ε) · log(1/ε)

σm(O)2σm(P2,1)2

)
With probability at least 1− η, the model returned by the spectral
learning algorithm for HMM satisfies∑

x1,...,xt

|Pr(x1:t)− P̂r(x1:t)| ≤ ε

where n0(ε) = O(ε1/(1−s)), s > 1 a constant.
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Compared with EM

Expectation-Maximization [9]:

I Local search heuristic algorithm based on the principle of
Maximum Likelihood Estimation

I Local optima problem.

I No consistency guarantees.

For a given t ≥ 1, and 0 < ε, η < 1, spectral learning algorithm:

I A finite sample complexity to be consistent in terms of L1

error on marginal probability.

I No local optima since it only solves an SVD without any local
search.
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EM v.s. Spectral algorithm

Two synthetic experiments:

SmallSyn LargeSyn

# states 4 50
# observations 8 100

test set size 4096 10,000
length of test sequence 4 50

Measure: normalized L1 prediction error on test data set

L1 =
∑

x1:t∈T
|Pr(x1:t)− P̂r(x1:t)|

1
t

where T is the test set.
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EM v.s. Spectral algorithm

1 1.5 2 2.5 3 3.5 4

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Rank Hyperparameter

N
o

rm
a

liz
e

d
 L

1
 e

rr
o

r
SmallSyn

 

 

Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

0 10 20 30 40 50
0.9

0.92

0.94

0.96

0.98

1

1.02

1.04

1.06

1.08

1.1

Rank Hyperparameter

N
o

rm
a

liz
e

d
 L

1
 e

rr
o

r

LargeSyn

 

 

Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

0 1 2 3 4 5

x 10
4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Training Size

N
o

rm
a

liz
e

d
 L

1
 e

rr
o

r

SmallSyn, m = 4

 

 

LearnHMM

EM

0 1 2 3 4 5

x 10
6

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Training Size

N
o

rm
a

liz
e

d
 L

1
 e

rr
o

r

LargeSyn, m = 50

 

 

LearnHMM

EM

34 / 69



EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:

I Size of training data.

I Estimation of rank hyperparameter.
I Length of test sequence.

Proportion of negative probabilities:

NEG PROP =
|{P̂r(x1:t) < 0 | x1:t ∈ T }|

|T |

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

SmallSyn

 

 
Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

LargeSyn

 

 

Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

35 / 69



EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:

I Size of training data.
I Estimation of rank hyperparameter.

I Length of test sequence.

Proportion of negative probabilities:

NEG PROP =
|{P̂r(x1:t) < 0 | x1:t ∈ T }|

|T |

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

SmallSyn

 

 
Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

LargeSyn

 

 

Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

36 / 69



EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:

I Size of training data.
I Estimation of rank hyperparameter.
I Length of test sequence.

Proportion of negative probabilities:

NEG PROP =
|{P̂r(x1:t) < 0 | x1:t ∈ T }|

|T |

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

SmallSyn

 

 
Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

LargeSyn

 

 

Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

37 / 69



EM v.s. Spectral algorithm
Negative probability problem with spectral learning algorithm:

I Size of training data.
I Estimation of rank hyperparameter.
I Length of test sequence.

Proportion of negative probabilities:

NEG PROP =
|{P̂r(x1:t) < 0 | x1:t ∈ T }|

|T |

1 1.5 2 2.5 3 3.5 4
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

SmallSyn

 

 
Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

0 10 20 30 40 50
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Rank Hyperparameter

P
ro

p
o

rt
io

n
 o

f 
N

e
g

a
ti
v
e

 P
ro

b
a

b
ili

ti
e

s

LargeSyn

 

 

Training Size = 10000

Training Size = 50000

Training Size = 100000

Training Size = 500000

Training Size = 1000000

38 / 69



Compared with EM

Why EM succeeds in practice?
If the log-likelihood function of model parameter tends to
concave/quasi-concave when the sample size goes to infinity ?

1. Local search algorithms, for example, EM algorithm in our
case, will converge to global optima, hence obtain the
maximum likelihood estimator [10].

2. Consistency. Sequence of MLE converges in probability to the
true model parameter (suppose the model is identifiable by
parameter) [11].

3. Asymptotic normality. The distribution of MLE tends to be a
Gaussian distribution with mean the true parameter and
covariance matrix equal to the inverse the Fisher information
matrix, i.e., more and more concentrated [11].

4. Most statistical efficient consistent estimator of model
parameter [11].
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Gaussian distribution with mean the true parameter and
covariance matrix equal to the inverse the Fisher information
matrix, i.e., more and more concentrated [11].

4. Most statistical efficient consistent estimator of model
parameter [11].
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Synthetic Experiment

Is our conjecture true in HMM? An HMM with one single
parameter for visualization:

H = 〈T =

(
θ 1− θ

1− θ θ

)
,O =

(
0.7 0.3
0.3 0.7

)
, π = (0.5, 0.5)〉

Beta distribution with uniform distribution as prior.
Exact Bayesian updating with more and more observations.
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Synthetic Experiment
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Synthetic Experiment
Another small synthetic experiment: HMM with 2 states, 2
observations and 4 free parameters.
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Conclusions

Spectral learning for HMM
Pros:

1. Additive L1 error bound with finite sample complexity.

2. No local optima.

Cons:

1. Negative probability.

2. Not most statistically efficient.

3. Slow to converge.
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Conclusions

EM for HMM
Pros:

1. Fast to converge.

2. Statistically efficient.

3. Optimization based approach.

Cons:

1. Local search heuristics, no provable guarantee for global
optima.

2. Stuck in local optima for non-convex optimization.
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