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Statistical Definition of Fairness

But, what’s fairness in an algorithmic context?

‘ a ’ Arvind Narayanan @

N\ & @random_walker

| wrote up a 2-pager titled "21 fairness
definitions and their politics" based on
the tweetstorm below and it was
accepted at a tutorial for the Conference
on Fairness, Accountability, and
Transparency!

Here it is (with minor edits):
docs.google.com/document/d/1bn

See you on Feb 23/24.

Arvind Narayanan @ @random_walker

When | tell my computer science colleagues that there are so many fairness
definitions, they are often surprised and/or confused. [Thread]
twitter.com/random_walker/...

Show this thread

Follow |

Definition Paper gltatlon
Group fairness or statistical parity | [12] 208
Conditional statistical parity [11] 29
Predictive parity 10 57
False positive error rate balance | [10] 57
False negative error rate balance | [10] 57
Equalised odds [14] 106
Conditional use accuracy equality | [8] 18
Overall accuracy equality 8] 18
Treatment equality 8] 18
Test-fairness or calibration (10 57
Well calibration 16] 81
Balance for positive class [16] 81
Balance for negative class (16 81

[Verma et al. 18]
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Experiment: Recidivism Prediction

COMPAS

- Train/Test: 4,320/1,852 instances from the Northpointe
- Target task: 0/1 classification (recidivism?)
- Sensitive attribute: race (Black/White)

- Other attributes: gender, education, prior arrest history, ... (12
total)

- Difference of base rate: Apr = 0.129

[ ] [ ]
Machine Bias
's software used across the coun lict future criminals

And it's biased against blacks.
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Conclusion

From a representation learning perspective, design algorithmic
intervention to

- Seek for equalized odds and accuracy parity simultaneously
- Not harm the existing statistical parity gap

- Practical implementation using adversarial training with two
auditor networks




