

Invariant Information Bottleneck for Domain Generalization

Bo Li^[1] Yifei Shen^[2] Yezhen Wang^[1] Wenzhen Zhu^[3] Colorado Reed^[4] Kurt Keutzer^[4] Dongsheng Li^[1] Han Zhao^[5] [1]Microsoft Research Asia, China [2]HKUST, China [3]WUSTL, USA [4]UC Berkeley, USA [5]UIUC, USA

Motivation

Washington University in St. Louis

Domain generalization(DG): learn a model from several training domains so that it generalizes to unseen test domains.

🔘 Berkeley 👖 ILLINOIS

(a) Bears in training/test domains

(b) Constrain pseudo-invariant feature

Invariant risk minimization (IRM): a promising DG method but is susceptible to **pseudo-invariant feature**. In figure (a), training domains contain most *brown color bears* while test domains contain bears in *other fur color*. IRM would probably rely on *fur color* as **pseudo-invariant feature** in training domains.

Question:

How could we eliminate the usage of those features while they are pseudo-invariant in training domains?

Answer:

By constraining the information of feature Z and input X. We denote the concept with figure (b).

Method

Previous Invariant Risk Minimization objective:

$$\min_{\Phi} \sum_{e \in \mathcal{E}_{\text{train}}} R^{e}(\Phi) + \lambda \cdot \|\nabla_{w|w=1.0} R^{e}(w \circ \Phi)\|$$

Practical Optimization Objective of IRM

Invariant Information Bottleneck

We first write IRM's objective into a mutual information (MI) one as denoted in red underline part. Then we combine IB's objective in green underline part. IIB's integrated objective is listed below.

 $\max_{\Phi} I(\Phi(X), Y) - \lambda I(Y, D \mid \Phi(X)) - \beta I(X, \Phi(X)).$

- Invariant Risk Minimization Information Bottleneck
- The mutual information form indicates the following properties:
- $\max_{\Phi} I(\Phi(X), Y)$ denotes feature $\Phi(X)$ should be informative to predict the class label.
- $\min_{\Phi} I(Y, D \mid \Phi(X))$ denotes feature $\Phi(X)$ should not change across domains for the same class label (e. g. outline and shape should always be the conditional invariant feature to predict a bear across domains).
- $\min_{\Phi} I(X, \Phi(X))$ denotes feature $\Phi(X)$ should contain least information about input.

Variational Approximation

We denote $Z = \Phi(X)$ and formulate the MI into practical losses. More

details are in Loss Function Design section.

• $I(Z,Y) - \beta I(Z,X) \ge \mathbb{E}_{p(x),y,z}[\log q(y \mid z)] - \beta \mathbb{E}_{p(x,z)}\left[\log \frac{p(z \mid x)}{r(z)}\right]$

•
$$I(Y, D \mid Z) = H(Y \mid Z) - H(Y \mid D, Z)$$

= $\sup \mathbb{E} - \left[\log q(y \mid Z)\right] - \sup \mathbb{E} - \left[\log q(y \mid Z)\right]$

$$= \sup_{q} \mathbb{E}_{p_{y,z}}[\log q(y|z)] - \sup_{h} \mathbb{E}_{p_{y,z,d}}[\log h(y|z,d)]$$

Training/Inference procedure of IIB, IIB optimizes a model consisting of three parts (1) an invariant predictor. (2) a domain-dependent predictor. (3) an encoder.

Experiments

Cross Line: we create ten-valued spurious feature by adding cross lines to images. We set 10 line patterns for 10 classes. For certain class *i*, majority ($p_{ii} = 0.5$) images are added with line pattern *i*, minority images ($p_{ij} = 0.05$) are added with other line pattern *j*.

	Majority Minorit	iter Toot Sot	Methods	Validation Acc. (%) \uparrow	Test Acc.(%)↑	
	Majority Minorit	y Test Set	ERM (Vapnik 1999)	90.12 ± 0.12	65.60 ± 0.27	
	Ch. BRIDE	10 A 10	IRM (Arjovsky et al. 2019)	63.82 ± 0.25	42.68 ± 0.32	
		4.6	IB-ERM (Ahuja et al. 2021)	83.93 ± 0.10	69.70 ± 0.42	
		* 194 A	IB-IRM (Ahuja et al. 2021)	81.61 ± 0.69	65.82 ± 0.77	
		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	IIB $(\lambda = 0)$	79.97 ± 0.50	69.52 ± 0.80	
	Type 1 (Cross Lines)		IIB $(\beta = 0)$	78.47 ± 0.50	66.93 ± 0.33	
	- , , , , , , , , , , , , , , , , , , ,		IIB	92.86 ± 0.29	71.04 ± 0.37	

DomainBed: leave one domain out model selection (train-validation selection is provided in supplementary file)

Methods	Colored-MNIST	Rotated-MNIST	VLCS	PACS	OfficeHome	TerraIncognita	DomainNet	Average
ERM (Vapnik 1999)	36.7 ± 0.1	97.7 ± 0.0	77.2 ± 0.4	83.0 ± 0.7	65.7 ± 0.5	41.4 ± 1.4	40.6 ± 0.2	63.2
DANN (Ganin et al. 2017)	40.7 ± 2.3	97.6 ± 0.2	$76.9{\scriptstyle~\pm~0.4}$	81.0 ± 1.1	64.9 ± 1.2	44.4 ± 1.1	38.2 ± 0.2	63.4
CDANN (Li et al. 2018b)	39.1 ± 4.4	97.5 ± 0.2	77.5 ± 0.2	78.8 ± 2.2	64.3 ± 1.7	39.9 ± 3.2	38.0 ± 0.1	62.2
MLDG (Li et al. 2018a)	36.7 ± 0.2	97.6 ± 0.0	77.2 ± 0.9	82.9 ± 1.7	66.1 ± 0.5	46.2 ± 0.9	41.0 ± 0.2	64.0
IRM (Arjovsky et al. 2019)	40.3 ± 4.2	97.0 ± 0.2	76.3 ± 0.6	81.5 ± 0.8	64.3 ± 1.5	41.2 ± 3.6	33.5 ± 3.0	62.0
GroupDRO (Sagawa et al. 2019)	36.8 ± 0.1	97.6 ± 0.1	77.9 ± 0.5	83.5 ± 0.2	65.2 ± 0.2	44.9 ± 1.4	33.0 ± 0.3	62.7
ID (Akuzawa, Iwasawa, and Matsuo 2019)	36.8 ± 0.1	97.8 ± 0.1	77.3 ± 0.5	83.2 ± 0.2	60.2 ± 5.2	46.5 ± 1.5	23.4 ± 9.5	60.7
VREx (Krueger et al. 2020a)	36.9 ± 0.3	93.6 ± 3.4	76.7 ± 1.0	81.3 ± 0.9	64.9 ± 1.3	37.3 ± 3.0	33.4 ± 3.1	60.6
ARM (Zhang et al. 2020)	36.8 ± 0.0	98.1 ± 0.1	76.6 ± 0.5	81.7 ± 0.2	64.4 ± 0.2	42.6 ± 2.7	35.2 ± 0.1	62.2
Mixup (Yan et al. 2020)	33.4 ± 4.7	97.8 ± 0.0	77.7 ± 0.6	83.2 ± 0.4	67.0 ± 0.2	48.7 ± 0.4	38.5 ± 0.3	63.8
RSC (Huang et al. 2020)	36.5 ± 0.2	97.6 ± 0.1	77.5 ± 0.5	82.6 ± 0.7	65.8 ± 0.7	40.0 ± 0.8	38.9 ± 0.5	62.7
MTL (Blanchard et al. 2021)	35.0 ± 1.7	97.8 ± 0.1	76.6 ± 0.5	83.7 ± 0.4	65.7 ± 0.5	44.9 ± 1.2	40.6 ± 0.1	63.5
SagNet (Nam et al. 2021)	36.5 ± 0.1	94.0 ± 3.0	77.5 ± 0.3	82.3 ± 0.1	67.6 ± 0.3	47.2 ± 0.9	40.2 ± 0.2	63.6
IIB(Ours)	39.9 ± 1.2	97.2 ± 0.2	77.2 ± 1.6	$\textbf{83.9} \pm 0.2$	68.6 ± 0.1	45.8 ± 1.4	41.5 ± 2.3	64.9

Conclusion: Cross Line experiment performance suggest IIB can better overcome pseudo-invariant features than IRM and other methods. DomainBed experiment performance suggest IIB is applicable to realistic DG task.

Conclusion

In this paper, we have following conclusions:

- To mitigate pseudo-invariant features, inspired by the IB's principle, we propose to constrain the mutual information between inputs and features.
- We developed a novel information-theoretic approach IIB to overcome above issues.
- We further adopt variational approximation to develop tractable loss functions.
- We analyze IIB's performance with extensive experiments on both synthetic and large-scale benchmarks.